Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ccinftydisj Structured version   Visualization version   GIF version

Theorem bj-ccinftydisj 33100
Description: The circle at infinity is disjoint from the set of complex numbers. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-ccinftydisj (ℂ ∩ ℂ) = ∅

Proof of Theorem bj-ccinftydisj
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 bj-inftyexpidisj 33097 . . . 4 ¬ (inftyexpi ‘𝑦) ∈ ℂ
21nex 1731 . . 3 ¬ ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ
3 elin 3796 . . . . . 6 (𝑥 ∈ (ℂ ∩ ℂ) ↔ (𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ))
4 df-bj-inftyexpi 33094 . . . . . . . . . . 11 inftyexpi = (𝑧 ∈ (-π(,]π) ↦ ⟨𝑧, ℂ⟩)
54funmpt2 5927 . . . . . . . . . 10 Fun inftyexpi
6 elrnrexdm 6363 . . . . . . . . . 10 (Fun inftyexpi → (𝑥 ∈ ran inftyexpi → ∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦)))
75, 6ax-mp 5 . . . . . . . . 9 (𝑥 ∈ ran inftyexpi → ∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦))
8 rexex 3002 . . . . . . . . 9 (∃𝑦 ∈ dom inftyexpi 𝑥 = (inftyexpi ‘𝑦) → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
97, 8syl 17 . . . . . . . 8 (𝑥 ∈ ran inftyexpi → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
10 df-bj-ccinfty 33099 . . . . . . . 8 = ran inftyexpi
119, 10eleq2s 2719 . . . . . . 7 (𝑥 ∈ ℂ → ∃𝑦 𝑥 = (inftyexpi ‘𝑦))
1211anim2i 593 . . . . . 6 ((𝑥 ∈ ℂ ∧ 𝑥 ∈ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)))
133, 12sylbi 207 . . . . 5 (𝑥 ∈ (ℂ ∩ ℂ) → (𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)))
14 ancom 466 . . . . . 6 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
15 exancom 1787 . . . . . . 7 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) ↔ ∃𝑦(𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
16 19.41v 1914 . . . . . . 7 (∃𝑦(𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
1715, 16bitri 264 . . . . . 6 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) ↔ (∃𝑦 𝑥 = (inftyexpi ‘𝑦) ∧ 𝑥 ∈ ℂ))
1814, 17sylbb2 228 . . . . 5 ((𝑥 ∈ ℂ ∧ ∃𝑦 𝑥 = (inftyexpi ‘𝑦)) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)))
1913, 18syl 17 . . . 4 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)))
20 eleq1 2689 . . . . . 6 (𝑥 = (inftyexpi ‘𝑦) → (𝑥 ∈ ℂ ↔ (inftyexpi ‘𝑦) ∈ ℂ))
2120biimpac 503 . . . . 5 ((𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) → (inftyexpi ‘𝑦) ∈ ℂ)
2221eximi 1762 . . . 4 (∃𝑦(𝑥 ∈ ℂ ∧ 𝑥 = (inftyexpi ‘𝑦)) → ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ)
2319, 22syl 17 . . 3 (𝑥 ∈ (ℂ ∩ ℂ) → ∃𝑦(inftyexpi ‘𝑦) ∈ ℂ)
242, 23mto 188 . 2 ¬ 𝑥 ∈ (ℂ ∩ ℂ)
2524nel0 3932 1 (ℂ ∩ ℂ) = ∅
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1483  wex 1704  wcel 1990  wrex 2913  cin 3573  c0 3915  cop 4183  dom cdm 5114  ran crn 5115  Fun wfun 5882  cfv 5888  (class class class)co 6650  cc 9934  -cneg 10267  (,]cioc 12176  πcpi 14797  inftyexpi cinftyexpi 33093  cccinfty 33098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-reg 8497  ax-cnex 9992
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-c 9942  df-bj-inftyexpi 33094  df-bj-ccinfty 33099
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator