Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eldiag Structured version   Visualization version   GIF version

Theorem bj-eldiag 33091
Description: Characterization of the elements of the diagonal of a Cartesian square. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-eldiag (𝐴𝑉 → (𝐵 ∈ (Diag‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵))))

Proof of Theorem bj-eldiag
StepHypRef Expression
1 bj-diagval 33090 . . 3 (𝐴𝑉 → (Diag‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
21eleq2d 2687 . 2 (𝐴𝑉 → (𝐵 ∈ (Diag‘𝐴) ↔ 𝐵 ∈ ( I ∩ (𝐴 × 𝐴))))
3 elin 3796 . . 3 (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)))
4 ancom 466 . . 3 ((𝐵 ∈ I ∧ 𝐵 ∈ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ))
5 bj-elid2 33086 . . . 4 (𝐵 ∈ (𝐴 × 𝐴) → (𝐵 ∈ I ↔ (1st𝐵) = (2nd𝐵)))
65pm5.32i 669 . . 3 ((𝐵 ∈ (𝐴 × 𝐴) ∧ 𝐵 ∈ I ) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵)))
73, 4, 63bitri 286 . 2 (𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵)))
82, 7syl6bb 276 1 (𝐴𝑉 → (𝐵 ∈ (Diag‘𝐴) ↔ (𝐵 ∈ (𝐴 × 𝐴) ∧ (1st𝐵) = (2nd𝐵))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  cin 3573   I cid 5023   × cxp 5112  cfv 5888  1st c1st 7166  2nd c2nd 7167  Diagcdiag2 33088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-iota 5851  df-fun 5890  df-fv 5896  df-1st 7168  df-2nd 7169  df-bj-diag 33089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator