| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-hbaeb2 | Structured version Visualization version GIF version | ||
| Description: Biconditional version of a form of hbae 2315 with commuted quantifiers, not requiring ax-11 2034. (Contributed by BJ, 12-Dec-2019.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-hbaeb2 | ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2053 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 2 | axc9 2302 | . . . . 5 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | |
| 3 | 1, 2 | syl7 74 | . . . 4 ⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) |
| 4 | axc11r 2187 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑥 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
| 5 | axc11 2314 | . . . . . 6 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦)) | |
| 6 | 5 | pm2.43i 52 | . . . . 5 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑥 = 𝑦) |
| 7 | axc11r 2187 | . . . . 5 ⊢ (∀𝑧 𝑧 = 𝑦 → (∀𝑦 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) | |
| 8 | 6, 7 | syl5 34 | . . . 4 ⊢ (∀𝑧 𝑧 = 𝑦 → (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦)) |
| 9 | 3, 4, 8 | pm2.61ii 177 | . . 3 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦) |
| 10 | 9 | axc4i 2131 | . 2 ⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑥∀𝑧 𝑥 = 𝑦) |
| 11 | sp 2053 | . . 3 ⊢ (∀𝑧 𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 12 | 11 | alimi 1739 | . 2 ⊢ (∀𝑥∀𝑧 𝑥 = 𝑦 → ∀𝑥 𝑥 = 𝑦) |
| 13 | 10, 12 | impbii 199 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥∀𝑧 𝑥 = 𝑦) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: bj-hbaeb 32806 bj-dvv 32808 |
| Copyright terms: Public domain | W3C validator |