![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > axc11 | Structured version Visualization version GIF version |
Description: Show that ax-c11 34172 can be derived from ax-c11n 34173 in the form of axc11n 2307. Normally, axc11 2314 should be used rather than ax-c11 34172, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) |
Ref | Expression |
---|---|
axc11 | ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axc11r 2187 | . 2 ⊢ (∀𝑦 𝑦 = 𝑥 → (∀𝑥𝜑 → ∀𝑦𝜑)) | |
2 | 1 | aecoms 2312 | 1 ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
This theorem is referenced by: hbae 2315 dral1 2325 dral1ALT 2326 nd1 9409 nd2 9410 axc11n11 32672 bj-hbaeb2 32805 wl-aetr 33317 ax6e2eq 38773 ax6e2eqVD 39143 2sb5ndVD 39146 2sb5ndALT 39168 |
Copyright terms: Public domain | W3C validator |