Proof of Theorem bj-ismooredr2
| Step | Hyp | Ref
| Expression |
| 1 | | selpw 4165 |
. . . . 5
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴) |
| 2 | | pm2.1 433 |
. . . . . . . 8
⊢ (¬
𝑥 = ∅ ∨ 𝑥 = ∅) |
| 3 | 2 | biantru 526 |
. . . . . . 7
⊢ (𝑥 ⊆ 𝐴 ↔ (𝑥 ⊆ 𝐴 ∧ (¬ 𝑥 = ∅ ∨ 𝑥 = ∅))) |
| 4 | | andi 911 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ (¬ 𝑥 = ∅ ∨ 𝑥 = ∅)) ↔ ((𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 = ∅) ∨ (𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅))) |
| 5 | 3, 4 | bitri 264 |
. . . . . 6
⊢ (𝑥 ⊆ 𝐴 ↔ ((𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 = ∅) ∨ (𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅))) |
| 6 | | df-ne 2795 |
. . . . . . . . 9
⊢ (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅) |
| 7 | 6 | bicomi 214 |
. . . . . . . 8
⊢ (¬
𝑥 = ∅ ↔ 𝑥 ≠ ∅) |
| 8 | 7 | anbi2i 730 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 = ∅) ↔ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅)) |
| 9 | | simpr 477 |
. . . . . . . 8
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅) → 𝑥 = ∅) |
| 10 | | id 22 |
. . . . . . . . . 10
⊢ (𝑥 = ∅ → 𝑥 = ∅) |
| 11 | | 0ss 3972 |
. . . . . . . . . 10
⊢ ∅
⊆ 𝐴 |
| 12 | 10, 11 | syl6eqss 3655 |
. . . . . . . . 9
⊢ (𝑥 = ∅ → 𝑥 ⊆ 𝐴) |
| 13 | 12 | ancri 575 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅)) |
| 14 | 9, 13 | impbii 199 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅) ↔ 𝑥 = ∅) |
| 15 | 8, 14 | orbi12i 543 |
. . . . . 6
⊢ (((𝑥 ⊆ 𝐴 ∧ ¬ 𝑥 = ∅) ∨ (𝑥 ⊆ 𝐴 ∧ 𝑥 = ∅)) ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ∨ 𝑥 = ∅)) |
| 16 | 5, 15 | bitri 264 |
. . . . 5
⊢ (𝑥 ⊆ 𝐴 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ∨ 𝑥 = ∅)) |
| 17 | 1, 16 | bitri 264 |
. . . 4
⊢ (𝑥 ∈ 𝒫 𝐴 ↔ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ∨ 𝑥 = ∅)) |
| 18 | | bj-ismooredr2.3 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ⊆ 𝐴) ∧ 𝑥 ≠ ∅) → ∩ 𝑥
∈ 𝐴) |
| 19 | 18 | expl 648 |
. . . . . 6
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥
∈ 𝐴)) |
| 20 | | intssuni2 4502 |
. . . . . . 7
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∩ 𝑥
⊆ ∪ 𝐴) |
| 21 | | sseqin2 3817 |
. . . . . . . . . . 11
⊢ (∩ 𝑥
⊆ ∪ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝑥) =
∩ 𝑥) |
| 22 | 21 | biimpi 206 |
. . . . . . . . . 10
⊢ (∩ 𝑥
⊆ ∪ 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥) =
∩ 𝑥) |
| 23 | 22 | eqcomd 2628 |
. . . . . . . . 9
⊢ (∩ 𝑥
⊆ ∪ 𝐴 → ∩ 𝑥 = (∪
𝐴 ∩ ∩ 𝑥)) |
| 24 | 23 | eleq1d 2686 |
. . . . . . . 8
⊢ (∩ 𝑥
⊆ ∪ 𝐴 → (∩ 𝑥 ∈ 𝐴 ↔ (∪ 𝐴 ∩ ∩ 𝑥)
∈ 𝐴)) |
| 25 | 24 | biimpd 219 |
. . . . . . 7
⊢ (∩ 𝑥
⊆ ∪ 𝐴 → (∩ 𝑥 ∈ 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥)
∈ 𝐴)) |
| 26 | 20, 25 | syl 17 |
. . . . . 6
⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (∩ 𝑥
∈ 𝐴 → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
| 27 | 19, 26 | sylcom 30 |
. . . . 5
⊢ (𝜑 → ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
| 28 | | bj-ismooredr2.2 |
. . . . . 6
⊢ (𝜑 → ∪ 𝐴
∈ 𝐴) |
| 29 | | rint0 4517 |
. . . . . . . 8
⊢ (𝑥 = ∅ → (∪ 𝐴
∩ ∩ 𝑥) = ∪ 𝐴) |
| 30 | 29 | eqcomd 2628 |
. . . . . . 7
⊢ (𝑥 = ∅ → ∪ 𝐴 =
(∪ 𝐴 ∩ ∩ 𝑥)) |
| 31 | 30 | eleq1d 2686 |
. . . . . 6
⊢ (𝑥 = ∅ → (∪ 𝐴
∈ 𝐴 ↔ (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
| 32 | 28, 31 | syl5ibcom 235 |
. . . . 5
⊢ (𝜑 → (𝑥 = ∅ → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
| 33 | 27, 32 | jaod 395 |
. . . 4
⊢ (𝜑 → (((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) ∨ 𝑥 = ∅) → (∪ 𝐴
∩ ∩ 𝑥) ∈ 𝐴)) |
| 34 | 17, 33 | syl5bi 232 |
. . 3
⊢ (𝜑 → (𝑥 ∈ 𝒫 𝐴 → (∪ 𝐴 ∩ ∩ 𝑥)
∈ 𝐴)) |
| 35 | 34 | ralrimiv 2965 |
. 2
⊢ (𝜑 → ∀𝑥 ∈ 𝒫 𝐴(∪ 𝐴 ∩ ∩ 𝑥)
∈ 𝐴) |
| 36 | | bj-ismooredr2.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 37 | | bj-ismoore 33059 |
. . 3
⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪
𝐴 ∩ ∩ 𝑥)
∈ 𝐴)) |
| 38 | 36, 37 | syl 17 |
. 2
⊢ (𝜑 → (𝐴 ∈ Moore ↔ ∀𝑥 ∈ 𝒫 𝐴(∪
𝐴 ∩ ∩ 𝑥)
∈ 𝐴)) |
| 39 | 35, 38 | mpbird 247 |
1
⊢ (𝜑 → 𝐴 ∈ Moore) |