Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismooredr Structured version   Visualization version   Unicode version

Theorem bj-ismooredr 33064
Description: Sufficient condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismooredr.1  |-  ( ph  ->  A  e.  V )
bj-ismooredr.2  |-  ( (
ph  /\  x  C_  A
)  ->  ( U. A  i^i  |^| x )  e.  A )
Assertion
Ref Expression
bj-ismooredr  |-  ( ph  ->  A  e. Moore_ )
Distinct variable groups:    ph, x    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-ismooredr
StepHypRef Expression
1 elpwi 4168 . . . . 5  |-  ( x  e.  ~P A  ->  x  C_  A )
2 bj-ismooredr.2 . . . . . 6  |-  ( (
ph  /\  x  C_  A
)  ->  ( U. A  i^i  |^| x )  e.  A )
32ex 450 . . . . 5  |-  ( ph  ->  ( x  C_  A  ->  ( U. A  i^i  |^| x )  e.  A
) )
41, 3syl5 34 . . . 4  |-  ( ph  ->  ( x  e.  ~P A  ->  ( U. A  i^i  |^| x )  e.  A ) )
54alrimiv 1855 . . 3  |-  ( ph  ->  A. x ( x  e.  ~P A  -> 
( U. A  i^i  |^| x )  e.  A
) )
6 df-ral 2917 . . 3  |-  ( A. x  e.  ~P  A
( U. A  i^i  |^| x )  e.  A  <->  A. x ( x  e. 
~P A  ->  ( U. A  i^i  |^| x
)  e.  A ) )
75, 6sylibr 224 . 2  |-  ( ph  ->  A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A )
8 bj-ismooredr.1 . . 3  |-  ( ph  ->  A  e.  V )
9 bj-ismoore 33059 . . 3  |-  ( A  e.  V  ->  ( A  e. Moore_  <->  A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A ) )
108, 9syl 17 . 2  |-  ( ph  ->  ( A  e. Moore_  <->  A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A ) )
117, 10mpbird 247 1  |-  ( ph  ->  A  e. Moore_ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   ~Pcpw 4158   U.cuni 4436   |^|cint 4475  Moore_cmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160  df-uni 4437  df-bj-moore 33058
This theorem is referenced by:  bj-discrmoore  33066
  Copyright terms: Public domain W3C validator