| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-ismooredr2 | Structured version Visualization version Unicode version | ||
| Description: Sufficient condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.) |
| Ref | Expression |
|---|---|
| bj-ismooredr2.1 |
|
| bj-ismooredr2.2 |
|
| bj-ismooredr2.3 |
|
| Ref | Expression |
|---|---|
| bj-ismooredr2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | selpw 4165 |
. . . . 5
| |
| 2 | pm2.1 433 |
. . . . . . . 8
| |
| 3 | 2 | biantru 526 |
. . . . . . 7
|
| 4 | andi 911 |
. . . . . . 7
| |
| 5 | 3, 4 | bitri 264 |
. . . . . 6
|
| 6 | df-ne 2795 |
. . . . . . . . 9
| |
| 7 | 6 | bicomi 214 |
. . . . . . . 8
|
| 8 | 7 | anbi2i 730 |
. . . . . . 7
|
| 9 | simpr 477 |
. . . . . . . 8
| |
| 10 | id 22 |
. . . . . . . . . 10
| |
| 11 | 0ss 3972 |
. . . . . . . . . 10
| |
| 12 | 10, 11 | syl6eqss 3655 |
. . . . . . . . 9
|
| 13 | 12 | ancri 575 |
. . . . . . . 8
|
| 14 | 9, 13 | impbii 199 |
. . . . . . 7
|
| 15 | 8, 14 | orbi12i 543 |
. . . . . 6
|
| 16 | 5, 15 | bitri 264 |
. . . . 5
|
| 17 | 1, 16 | bitri 264 |
. . . 4
|
| 18 | bj-ismooredr2.3 |
. . . . . . 7
| |
| 19 | 18 | expl 648 |
. . . . . 6
|
| 20 | intssuni2 4502 |
. . . . . . 7
| |
| 21 | sseqin2 3817 |
. . . . . . . . . . 11
| |
| 22 | 21 | biimpi 206 |
. . . . . . . . . 10
|
| 23 | 22 | eqcomd 2628 |
. . . . . . . . 9
|
| 24 | 23 | eleq1d 2686 |
. . . . . . . 8
|
| 25 | 24 | biimpd 219 |
. . . . . . 7
|
| 26 | 20, 25 | syl 17 |
. . . . . 6
|
| 27 | 19, 26 | sylcom 30 |
. . . . 5
|
| 28 | bj-ismooredr2.2 |
. . . . . 6
| |
| 29 | rint0 4517 |
. . . . . . . 8
| |
| 30 | 29 | eqcomd 2628 |
. . . . . . 7
|
| 31 | 30 | eleq1d 2686 |
. . . . . 6
|
| 32 | 28, 31 | syl5ibcom 235 |
. . . . 5
|
| 33 | 27, 32 | jaod 395 |
. . . 4
|
| 34 | 17, 33 | syl5bi 232 |
. . 3
|
| 35 | 34 | ralrimiv 2965 |
. 2
|
| 36 | bj-ismooredr2.1 |
. . 3
| |
| 37 | bj-ismoore 33059 |
. . 3
| |
| 38 | 36, 37 | syl 17 |
. 2
|
| 39 | 35, 38 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 df-uni 4437 df-int 4476 df-bj-moore 33058 |
| This theorem is referenced by: bj-snmoore 33068 |
| Copyright terms: Public domain | W3C validator |