Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-ismooredr2 Structured version   Visualization version   Unicode version

Theorem bj-ismooredr2 33065
Description: Sufficient condition to be a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Hypotheses
Ref Expression
bj-ismooredr2.1  |-  ( ph  ->  A  e.  V )
bj-ismooredr2.2  |-  ( ph  ->  U. A  e.  A
)
bj-ismooredr2.3  |-  ( ( ( ph  /\  x  C_  A )  /\  x  =/=  (/) )  ->  |^| x  e.  A )
Assertion
Ref Expression
bj-ismooredr2  |-  ( ph  ->  A  e. Moore_ )
Distinct variable groups:    ph, x    x, A
Allowed substitution hint:    V( x)

Proof of Theorem bj-ismooredr2
StepHypRef Expression
1 selpw 4165 . . . . 5  |-  ( x  e.  ~P A  <->  x  C_  A
)
2 pm2.1 433 . . . . . . . 8  |-  ( -.  x  =  (/)  \/  x  =  (/) )
32biantru 526 . . . . . . 7  |-  ( x 
C_  A  <->  ( x  C_  A  /\  ( -.  x  =  (/)  \/  x  =  (/) ) ) )
4 andi 911 . . . . . . 7  |-  ( ( x  C_  A  /\  ( -.  x  =  (/) 
\/  x  =  (/) ) )  <->  ( (
x  C_  A  /\  -.  x  =  (/) )  \/  ( x  C_  A  /\  x  =  (/) ) ) )
53, 4bitri 264 . . . . . 6  |-  ( x 
C_  A  <->  ( (
x  C_  A  /\  -.  x  =  (/) )  \/  ( x  C_  A  /\  x  =  (/) ) ) )
6 df-ne 2795 . . . . . . . . 9  |-  ( x  =/=  (/)  <->  -.  x  =  (/) )
76bicomi 214 . . . . . . . 8  |-  ( -.  x  =  (/)  <->  x  =/=  (/) )
87anbi2i 730 . . . . . . 7  |-  ( ( x  C_  A  /\  -.  x  =  (/) )  <->  ( x  C_  A  /\  x  =/=  (/) ) )
9 simpr 477 . . . . . . . 8  |-  ( ( x  C_  A  /\  x  =  (/) )  ->  x  =  (/) )
10 id 22 . . . . . . . . . 10  |-  ( x  =  (/)  ->  x  =  (/) )
11 0ss 3972 . . . . . . . . . 10  |-  (/)  C_  A
1210, 11syl6eqss 3655 . . . . . . . . 9  |-  ( x  =  (/)  ->  x  C_  A )
1312ancri 575 . . . . . . . 8  |-  ( x  =  (/)  ->  ( x 
C_  A  /\  x  =  (/) ) )
149, 13impbii 199 . . . . . . 7  |-  ( ( x  C_  A  /\  x  =  (/) )  <->  x  =  (/) )
158, 14orbi12i 543 . . . . . 6  |-  ( ( ( x  C_  A  /\  -.  x  =  (/) )  \/  ( x  C_  A  /\  x  =  (/) ) )  <->  ( (
x  C_  A  /\  x  =/=  (/) )  \/  x  =  (/) ) )
165, 15bitri 264 . . . . 5  |-  ( x 
C_  A  <->  ( (
x  C_  A  /\  x  =/=  (/) )  \/  x  =  (/) ) )
171, 16bitri 264 . . . 4  |-  ( x  e.  ~P A  <->  ( (
x  C_  A  /\  x  =/=  (/) )  \/  x  =  (/) ) )
18 bj-ismooredr2.3 . . . . . . 7  |-  ( ( ( ph  /\  x  C_  A )  /\  x  =/=  (/) )  ->  |^| x  e.  A )
1918expl 648 . . . . . 6  |-  ( ph  ->  ( ( x  C_  A  /\  x  =/=  (/) )  ->  |^| x  e.  A
) )
20 intssuni2 4502 . . . . . . 7  |-  ( ( x  C_  A  /\  x  =/=  (/) )  ->  |^| x  C_ 
U. A )
21 sseqin2 3817 . . . . . . . . . . 11  |-  ( |^| x  C_  U. A  <->  ( U. A  i^i  |^| x )  = 
|^| x )
2221biimpi 206 . . . . . . . . . 10  |-  ( |^| x  C_  U. A  -> 
( U. A  i^i  |^| x )  =  |^| x )
2322eqcomd 2628 . . . . . . . . 9  |-  ( |^| x  C_  U. A  ->  |^| x  =  ( U. A  i^i  |^| x
) )
2423eleq1d 2686 . . . . . . . 8  |-  ( |^| x  C_  U. A  -> 
( |^| x  e.  A  <->  ( U. A  i^i  |^| x )  e.  A
) )
2524biimpd 219 . . . . . . 7  |-  ( |^| x  C_  U. A  -> 
( |^| x  e.  A  ->  ( U. A  i^i  |^| x )  e.  A
) )
2620, 25syl 17 . . . . . 6  |-  ( ( x  C_  A  /\  x  =/=  (/) )  ->  ( |^| x  e.  A  ->  ( U. A  i^i  |^| x )  e.  A
) )
2719, 26sylcom 30 . . . . 5  |-  ( ph  ->  ( ( x  C_  A  /\  x  =/=  (/) )  -> 
( U. A  i^i  |^| x )  e.  A
) )
28 bj-ismooredr2.2 . . . . . 6  |-  ( ph  ->  U. A  e.  A
)
29 rint0 4517 . . . . . . . 8  |-  ( x  =  (/)  ->  ( U. A  i^i  |^| x )  = 
U. A )
3029eqcomd 2628 . . . . . . 7  |-  ( x  =  (/)  ->  U. A  =  ( U. A  i^i  |^| x ) )
3130eleq1d 2686 . . . . . 6  |-  ( x  =  (/)  ->  ( U. A  e.  A  <->  ( U. A  i^i  |^| x )  e.  A ) )
3228, 31syl5ibcom 235 . . . . 5  |-  ( ph  ->  ( x  =  (/)  ->  ( U. A  i^i  |^| x )  e.  A
) )
3327, 32jaod 395 . . . 4  |-  ( ph  ->  ( ( ( x 
C_  A  /\  x  =/=  (/) )  \/  x  =  (/) )  ->  ( U. A  i^i  |^| x
)  e.  A ) )
3417, 33syl5bi 232 . . 3  |-  ( ph  ->  ( x  e.  ~P A  ->  ( U. A  i^i  |^| x )  e.  A ) )
3534ralrimiv 2965 . 2  |-  ( ph  ->  A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A )
36 bj-ismooredr2.1 . . 3  |-  ( ph  ->  A  e.  V )
37 bj-ismoore 33059 . . 3  |-  ( A  e.  V  ->  ( A  e. Moore_  <->  A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A ) )
3836, 37syl 17 . 2  |-  ( ph  ->  ( A  e. Moore_  <->  A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A ) )
3935, 38mpbird 247 1  |-  ( ph  ->  A  e. Moore_ )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475  Moore_cmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-uni 4437  df-int 4476  df-bj-moore 33058
This theorem is referenced by:  bj-snmoore  33068
  Copyright terms: Public domain W3C validator