Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-snmoore Structured version   Visualization version   GIF version

Theorem bj-snmoore 33068
Description: A singleton is a Moore collection. (Contributed by BJ, 9-Dec-2021.)
Assertion
Ref Expression
bj-snmoore (𝐴 ∈ V ↔ {𝐴} ∈ Moore)

Proof of Theorem bj-snmoore
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 snex 4908 . . . 4 {𝐴} ∈ V
21a1i 11 . . 3 (𝐴 ∈ V → {𝐴} ∈ V)
3 unisng 4452 . . . 4 (𝐴 ∈ V → {𝐴} = 𝐴)
4 snidg 4206 . . . 4 (𝐴 ∈ V → 𝐴 ∈ {𝐴})
53, 4eqeltrd 2701 . . 3 (𝐴 ∈ V → {𝐴} ∈ {𝐴})
6 df-ne 2795 . . . . . . . 8 (𝑥 ≠ ∅ ↔ ¬ 𝑥 = ∅)
7 sssn 4358 . . . . . . . 8 (𝑥 ⊆ {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
8 biorf 420 . . . . . . . . 9 𝑥 = ∅ → (𝑥 = {𝐴} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴})))
98biimpar 502 . . . . . . . 8 ((¬ 𝑥 = ∅ ∧ (𝑥 = ∅ ∨ 𝑥 = {𝐴})) → 𝑥 = {𝐴})
106, 7, 9syl2anb 496 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → 𝑥 = {𝐴})
11 inteq 4478 . . . . . . . . 9 (𝑥 = {𝐴} → 𝑥 = {𝐴})
12 intsng 4512 . . . . . . . . 9 (𝐴 ∈ V → {𝐴} = 𝐴)
13 eqtr 2641 . . . . . . . . . 10 (( 𝑥 = {𝐴} ∧ {𝐴} = 𝐴) → 𝑥 = 𝐴)
1413ex 450 . . . . . . . . 9 ( 𝑥 = {𝐴} → ( {𝐴} = 𝐴 𝑥 = 𝐴))
1511, 12, 14syl2im 40 . . . . . . . 8 (𝑥 = {𝐴} → (𝐴 ∈ V → 𝑥 = 𝐴))
16 intex 4820 . . . . . . . . . 10 (𝑥 ≠ ∅ ↔ 𝑥 ∈ V)
17 elsng 4191 . . . . . . . . . 10 ( 𝑥 ∈ V → ( 𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴))
1816, 17sylbi 207 . . . . . . . . 9 (𝑥 ≠ ∅ → ( 𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴))
1918biimprd 238 . . . . . . . 8 (𝑥 ≠ ∅ → ( 𝑥 = 𝐴 𝑥 ∈ {𝐴}))
2015, 19sylan9r 690 . . . . . . 7 ((𝑥 ≠ ∅ ∧ 𝑥 = {𝐴}) → (𝐴 ∈ V → 𝑥 ∈ {𝐴}))
2110, 20syldan 487 . . . . . 6 ((𝑥 ≠ ∅ ∧ 𝑥 ⊆ {𝐴}) → (𝐴 ∈ V → 𝑥 ∈ {𝐴}))
2221ex 450 . . . . 5 (𝑥 ≠ ∅ → (𝑥 ⊆ {𝐴} → (𝐴 ∈ V → 𝑥 ∈ {𝐴})))
2322com13 88 . . . 4 (𝐴 ∈ V → (𝑥 ⊆ {𝐴} → (𝑥 ≠ ∅ → 𝑥 ∈ {𝐴})))
2423imp31 448 . . 3 (((𝐴 ∈ V ∧ 𝑥 ⊆ {𝐴}) ∧ 𝑥 ≠ ∅) → 𝑥 ∈ {𝐴})
252, 5, 24bj-ismooredr2 33065 . 2 (𝐴 ∈ V → {𝐴} ∈ Moore)
26 snprc 4253 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
2726biimpi 206 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
28 bj-0nmoore 33067 . . . . 5 ¬ ∅ ∈ Moore
2928a1i 11 . . . 4 𝐴 ∈ V → ¬ ∅ ∈ Moore)
3027, 29eqneltrd 2720 . . 3 𝐴 ∈ V → ¬ {𝐴} ∈ Moore)
3130con4i 113 . 2 ({𝐴} ∈ Moore𝐴 ∈ V)
3225, 31impbii 199 1 (𝐴 ∈ V ↔ {𝐴} ∈ Moore)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383   = wceq 1483  wcel 1990  wne 2794  Vcvv 3200  wss 3574  c0 3915  {csn 4177   cuni 4436   cint 4475  Moorecmoore 33057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-sn 4178  df-pr 4180  df-uni 4437  df-int 4476  df-bj-moore 33058
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator