Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mooreset Structured version   Visualization version   Unicode version

Theorem bj-mooreset 33056
Description: A Moore collection is a set. That is, if we define a "Moore predicate" by  (Moore A  <->  A. x  e.  ~P A ( U. A  i^i  |^| x )  e.  A ), then any class satisfying that predicate is actually a set. Therefore, the definition df-bj-moore 33058 is sufficient. Note that the closed sets of a topology form a Moore collection, so this remark also applies to topologies and many other families of sets (namely, as soon as the whole set is required to be a closed set, as can be seen from the proof, which relies crucially on uniexr 6972).

Note: if, in the above predicate, we substitute  ~P X for  A, then the last  e.  ~P X could be weakened to  C_  ~P X, and then the predicate would be obviously satisfied since  U. ~P X  =  X, making  ~P X a Moore collection in this weaker sense, even if  X is a proper class, but the addition of this single case does not add anything interesting. (Contributed by BJ, 8-Dec-2021.)

Assertion
Ref Expression
bj-mooreset  |-  ( A. x  e.  ~P  A
( U. A  i^i  |^| x )  e.  A  ->  A  e.  _V )
Distinct variable group:    x, A

Proof of Theorem bj-mooreset
StepHypRef Expression
1 0elpw 4834 . . 3  |-  (/)  e.  ~P A
2 rint0 4517 . . . . 5  |-  ( x  =  (/)  ->  ( U. A  i^i  |^| x )  = 
U. A )
32eleq1d 2686 . . . 4  |-  ( x  =  (/)  ->  ( ( U. A  i^i  |^| x )  e.  A  <->  U. A  e.  A ) )
43rspcv 3305 . . 3  |-  ( (/)  e.  ~P A  ->  ( A. x  e.  ~P  A ( U. A  i^i  |^| x )  e.  A  ->  U. A  e.  A ) )
51, 4ax-mp 5 . 2  |-  ( A. x  e.  ~P  A
( U. A  i^i  |^| x )  e.  A  ->  U. A  e.  A
)
6 uniexr 6972 . 2  |-  ( U. A  e.  A  ->  A  e.  _V )
75, 6syl 17 1  |-  ( A. x  e.  ~P  A
( U. A  i^i  |^| x )  e.  A  ->  A  e.  _V )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   A.wral 2912   _Vcvv 3200    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   |^|cint 4475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-pw 4160  df-uni 4437  df-int 4476
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator