![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-pr22val | Structured version Visualization version GIF version |
Description: Value of the second projection of a couple. (Contributed by BJ, 6-Oct-2018.) |
Ref | Expression |
---|---|
bj-pr22val | ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bj-2upl 32999 | . . . 4 ⊢ ⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐵)) | |
2 | bj-pr2eq 33004 | . . . 4 ⊢ (⦅𝐴, 𝐵⦆ = (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐵)) → pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐵))) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ pr2 ⦅𝐴, 𝐵⦆ = pr2 (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐵)) |
4 | bj-pr2un 33005 | . . 3 ⊢ pr2 (⦅𝐴⦆ ∪ ({1𝑜} × tag 𝐵)) = (pr2 ⦅𝐴⦆ ∪ pr2 ({1𝑜} × tag 𝐵)) | |
5 | 3, 4 | eqtri 2644 | . 2 ⊢ pr2 ⦅𝐴, 𝐵⦆ = (pr2 ⦅𝐴⦆ ∪ pr2 ({1𝑜} × tag 𝐵)) |
6 | df-bj-1upl 32986 | . . . . 5 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
7 | bj-pr2eq 33004 | . . . . 5 ⊢ (⦅𝐴⦆ = ({∅} × tag 𝐴) → pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴)) | |
8 | 6, 7 | ax-mp 5 | . . . 4 ⊢ pr2 ⦅𝐴⦆ = pr2 ({∅} × tag 𝐴) |
9 | bj-pr2val 33006 | . . . 4 ⊢ pr2 ({∅} × tag 𝐴) = if(∅ = 1𝑜, 𝐴, ∅) | |
10 | 1n0 7575 | . . . . . 6 ⊢ 1𝑜 ≠ ∅ | |
11 | 10 | nesymi 2851 | . . . . 5 ⊢ ¬ ∅ = 1𝑜 |
12 | 11 | iffalsei 4096 | . . . 4 ⊢ if(∅ = 1𝑜, 𝐴, ∅) = ∅ |
13 | 8, 9, 12 | 3eqtri 2648 | . . 3 ⊢ pr2 ⦅𝐴⦆ = ∅ |
14 | bj-pr2val 33006 | . . . 4 ⊢ pr2 ({1𝑜} × tag 𝐵) = if(1𝑜 = 1𝑜, 𝐵, ∅) | |
15 | eqid 2622 | . . . . 5 ⊢ 1𝑜 = 1𝑜 | |
16 | 15 | iftruei 4093 | . . . 4 ⊢ if(1𝑜 = 1𝑜, 𝐵, ∅) = 𝐵 |
17 | 14, 16 | eqtri 2644 | . . 3 ⊢ pr2 ({1𝑜} × tag 𝐵) = 𝐵 |
18 | 13, 17 | uneq12i 3765 | . 2 ⊢ (pr2 ⦅𝐴⦆ ∪ pr2 ({1𝑜} × tag 𝐵)) = (∅ ∪ 𝐵) |
19 | uncom 3757 | . . 3 ⊢ (∅ ∪ 𝐵) = (𝐵 ∪ ∅) | |
20 | un0 3967 | . . 3 ⊢ (𝐵 ∪ ∅) = 𝐵 | |
21 | 19, 20 | eqtri 2644 | . 2 ⊢ (∅ ∪ 𝐵) = 𝐵 |
22 | 5, 18, 21 | 3eqtri 2648 | 1 ⊢ pr2 ⦅𝐴, 𝐵⦆ = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∪ cun 3572 ∅c0 3915 ifcif 4086 {csn 4177 × cxp 5112 1𝑜c1o 7553 tag bj-ctag 32962 ⦅bj-c1upl 32985 ⦅bj-c2uple 32998 pr2 bj-cpr2 33002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-1o 7560 df-bj-sngl 32954 df-bj-tag 32963 df-bj-proj 32979 df-bj-1upl 32986 df-bj-2upl 32999 df-bj-pr2 33003 |
This theorem is referenced by: bj-2uplth 33009 bj-2uplex 33010 |
Copyright terms: Public domain | W3C validator |