![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > blenval | Structured version Visualization version GIF version |
Description: The binary length of an integer. (Contributed by AV, 20-May-2020.) |
Ref | Expression |
---|---|
blenval | ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-blen 42364 | . . 3 ⊢ #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1))) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑁 ∈ 𝑉 → #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)))) |
3 | eqeq1 2626 | . . . 4 ⊢ (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0)) | |
4 | fveq2 6191 | . . . . . . 7 ⊢ (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁)) | |
5 | 4 | oveq2d 6666 | . . . . . 6 ⊢ (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁))) |
6 | 5 | fveq2d 6195 | . . . . 5 ⊢ (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁)))) |
7 | 6 | oveq1d 6665 | . . . 4 ⊢ (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1)) |
8 | 3, 7 | ifbieq2d 4111 | . . 3 ⊢ (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
9 | 8 | adantl 482 | . 2 ⊢ ((𝑁 ∈ 𝑉 ∧ 𝑛 = 𝑁) → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
10 | elex 3212 | . 2 ⊢ (𝑁 ∈ 𝑉 → 𝑁 ∈ V) | |
11 | 1ex 10035 | . . . 4 ⊢ 1 ∈ V | |
12 | ovex 6678 | . . . 4 ⊢ ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V | |
13 | 11, 12 | ifex 4156 | . . 3 ⊢ if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V |
14 | 13 | a1i 11 | . 2 ⊢ (𝑁 ∈ 𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V) |
15 | 2, 9, 10, 14 | fvmptd 6288 | 1 ⊢ (𝑁 ∈ 𝑉 → (#b‘𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∈ wcel 1990 Vcvv 3200 ifcif 4086 ↦ cmpt 4729 ‘cfv 5888 (class class class)co 6650 0cc0 9936 1c1 9937 + caddc 9939 2c2 11070 ⌊cfl 12591 abscabs 13974 logb clogb 24502 #bcblen 42363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-1cn 9994 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 df-ov 6653 df-blen 42364 |
This theorem is referenced by: blen0 42366 blenn0 42367 |
Copyright terms: Public domain | W3C validator |