Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  blenval Structured version   Visualization version   GIF version

Theorem blenval 42365
Description: The binary length of an integer. (Contributed by AV, 20-May-2020.)
Assertion
Ref Expression
blenval (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))

Proof of Theorem blenval
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 df-blen 42364 . . 3 #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)))
21a1i 11 . 2 (𝑁𝑉 → #b = (𝑛 ∈ V ↦ if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1))))
3 eqeq1 2626 . . . 4 (𝑛 = 𝑁 → (𝑛 = 0 ↔ 𝑁 = 0))
4 fveq2 6191 . . . . . . 7 (𝑛 = 𝑁 → (abs‘𝑛) = (abs‘𝑁))
54oveq2d 6666 . . . . . 6 (𝑛 = 𝑁 → (2 logb (abs‘𝑛)) = (2 logb (abs‘𝑁)))
65fveq2d 6195 . . . . 5 (𝑛 = 𝑁 → (⌊‘(2 logb (abs‘𝑛))) = (⌊‘(2 logb (abs‘𝑁))))
76oveq1d 6665 . . . 4 (𝑛 = 𝑁 → ((⌊‘(2 logb (abs‘𝑛))) + 1) = ((⌊‘(2 logb (abs‘𝑁))) + 1))
83, 7ifbieq2d 4111 . . 3 (𝑛 = 𝑁 → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
98adantl 482 . 2 ((𝑁𝑉𝑛 = 𝑁) → if(𝑛 = 0, 1, ((⌊‘(2 logb (abs‘𝑛))) + 1)) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
10 elex 3212 . 2 (𝑁𝑉𝑁 ∈ V)
11 1ex 10035 . . . 4 1 ∈ V
12 ovex 6678 . . . 4 ((⌊‘(2 logb (abs‘𝑁))) + 1) ∈ V
1311, 12ifex 4156 . . 3 if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V
1413a1i 11 . 2 (𝑁𝑉 → if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)) ∈ V)
152, 9, 10, 14fvmptd 6288 1 (𝑁𝑉 → (#b𝑁) = if(𝑁 = 0, 1, ((⌊‘(2 logb (abs‘𝑁))) + 1)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  Vcvv 3200  ifcif 4086  cmpt 4729  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  2c2 11070  cfl 12591  abscabs 13974   logb clogb 24502  #bcblen 42363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-1cn 9994
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-blen 42364
This theorem is referenced by:  blen0  42366  blenn0  42367
  Copyright terms: Public domain W3C validator