| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj1371 | Structured version Visualization version GIF version | ||
| Description: Technical lemma for bnj60 31130. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj1371.1 | ⊢ 𝐵 = {𝑑 ∣ (𝑑 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝑑 pred(𝑥, 𝐴, 𝑅) ⊆ 𝑑)} |
| bnj1371.2 | ⊢ 𝑌 = 〈𝑥, (𝑓 ↾ pred(𝑥, 𝐴, 𝑅))〉 |
| bnj1371.3 | ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} |
| bnj1371.4 | ⊢ (𝜏 ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑥} ∪ trCl(𝑥, 𝐴, 𝑅)))) |
| bnj1371.5 | ⊢ 𝐷 = {𝑥 ∈ 𝐴 ∣ ¬ ∃𝑓𝜏} |
| bnj1371.6 | ⊢ (𝜓 ↔ (𝑅 FrSe 𝐴 ∧ 𝐷 ≠ ∅)) |
| bnj1371.7 | ⊢ (𝜒 ↔ (𝜓 ∧ 𝑥 ∈ 𝐷 ∧ ∀𝑦 ∈ 𝐷 ¬ 𝑦𝑅𝑥)) |
| bnj1371.8 | ⊢ (𝜏′ ↔ [𝑦 / 𝑥]𝜏) |
| bnj1371.9 | ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} |
| bnj1371.10 | ⊢ 𝑃 = ∪ 𝐻 |
| bnj1371.11 | ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| Ref | Expression |
|---|---|
| bnj1371 | ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj1371.9 | . . . . . . 7 ⊢ 𝐻 = {𝑓 ∣ ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′} | |
| 2 | 1 | bnj1436 30910 | . . . . . 6 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′) |
| 3 | rexex 3002 | . . . . . 6 ⊢ (∃𝑦 ∈ pred (𝑥, 𝐴, 𝑅)𝜏′ → ∃𝑦𝜏′) | |
| 4 | 2, 3 | syl 17 | . . . . 5 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦𝜏′) |
| 5 | bnj1371.11 | . . . . . 6 ⊢ (𝜏′ ↔ (𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) | |
| 6 | 5 | exbii 1774 | . . . . 5 ⊢ (∃𝑦𝜏′ ↔ ∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 7 | 4, 6 | sylib 208 | . . . 4 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅)))) |
| 8 | exsimpl 1795 | . . . 4 ⊢ (∃𝑦(𝑓 ∈ 𝐶 ∧ dom 𝑓 = ({𝑦} ∪ trCl(𝑦, 𝐴, 𝑅))) → ∃𝑦 𝑓 ∈ 𝐶) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦 𝑓 ∈ 𝐶) |
| 10 | bnj1371.3 | . . . . . . 7 ⊢ 𝐶 = {𝑓 ∣ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))} | |
| 11 | 10 | abeq2i 2735 | . . . . . 6 ⊢ (𝑓 ∈ 𝐶 ↔ ∃𝑑 ∈ 𝐵 (𝑓 Fn 𝑑 ∧ ∀𝑥 ∈ 𝑑 (𝑓‘𝑥) = (𝐺‘𝑌))) |
| 12 | 11 | bnj1238 30877 | . . . . 5 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 𝑓 Fn 𝑑) |
| 13 | fnfun 5988 | . . . . 5 ⊢ (𝑓 Fn 𝑑 → Fun 𝑓) | |
| 14 | 12, 13 | bnj31 30785 | . . . 4 ⊢ (𝑓 ∈ 𝐶 → ∃𝑑 ∈ 𝐵 Fun 𝑓) |
| 15 | 14 | bnj1265 30883 | . . 3 ⊢ (𝑓 ∈ 𝐶 → Fun 𝑓) |
| 16 | 9, 15 | bnj593 30815 | . 2 ⊢ (𝑓 ∈ 𝐻 → ∃𝑦Fun 𝑓) |
| 17 | 16 | bnj937 30842 | 1 ⊢ (𝑓 ∈ 𝐻 → Fun 𝑓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∃wex 1704 ∈ wcel 1990 {cab 2608 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 {crab 2916 [wsbc 3435 ∪ cun 3572 ⊆ wss 3574 ∅c0 3915 {csn 4177 〈cop 4183 ∪ cuni 4436 class class class wbr 4653 dom cdm 5114 ↾ cres 5116 Fun wfun 5882 Fn wfn 5883 ‘cfv 5888 predc-bnj14 30754 FrSe w-bnj15 30758 trClc-bnj18 30760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-rex 2918 df-fn 5891 |
| This theorem is referenced by: bnj1384 31100 |
| Copyright terms: Public domain | W3C validator |