| Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj937 | Structured version Visualization version GIF version | ||
| Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bnj937.1 | ⊢ (𝜑 → ∃𝑥𝜓) |
| Ref | Expression |
|---|---|
| bnj937 | ⊢ (𝜑 → 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bnj937.1 | . 2 ⊢ (𝜑 → ∃𝑥𝜓) | |
| 2 | 19.9v 1896 | . 2 ⊢ (∃𝑥𝜓 ↔ 𝜓) | |
| 3 | 1, 2 | sylib 208 | 1 ⊢ (𝜑 → 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∃wex 1704 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 |
| This theorem is referenced by: bnj1265 30883 bnj1379 30901 bnj852 30991 bnj1148 31064 bnj1154 31067 bnj1189 31077 bnj1245 31082 bnj1286 31087 bnj1311 31092 bnj1371 31097 bnj1374 31099 bnj1498 31129 bnj1514 31131 |
| Copyright terms: Public domain | W3C validator |