![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fnfun | Structured version Visualization version GIF version |
Description: A function with domain is a function. (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
fnfun | ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5891 | . 2 ⊢ (𝐹 Fn 𝐴 ↔ (Fun 𝐹 ∧ dom 𝐹 = 𝐴)) | |
2 | 1 | simplbi 476 | 1 ⊢ (𝐹 Fn 𝐴 → Fun 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 dom cdm 5114 Fun wfun 5882 Fn wfn 5883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-fn 5891 |
This theorem is referenced by: fnrel 5989 funfni 5991 fnco 5999 fnssresb 6003 ffun 6048 f1fun 6103 f1ofun 6139 fnbrfvb 6236 fvelimab 6253 fvun1 6269 elpreima 6337 respreima 6344 fnsnb 6432 fnprb 6472 fntpb 6473 fconst3 6477 fnfvima 6496 fnunirn 6511 nvof1o 6536 f1eqcocnv 6556 fnexALT 7132 curry1 7269 curry2 7272 suppvalfn 7302 suppfnss 7320 fnsuppres 7322 wfrlem2 7415 wfrlem14 7428 tfrlem4 7475 tfrlem5 7476 tfrlem11 7484 tz7.48-2 7537 tz7.49 7540 fndmeng 8034 fnfi 8238 fodomfi 8239 resfnfinfin 8246 fczfsuppd 8293 marypha2lem4 8344 inf0 8518 r1elss 8669 dfac8alem 8852 alephfp 8931 dfac3 8944 dfac9 8958 dfac12lem1 8965 dfac12lem2 8966 r1om 9066 cfsmolem 9092 alephsing 9098 zorn2lem1 9318 zorn2lem5 9322 zorn2lem6 9323 zorn2lem7 9324 ttukeylem3 9333 ttukeylem6 9336 fnct 9359 smobeth 9408 fpwwe2lem9 9460 wunr1om 9541 tskr1om 9589 tskr1om2 9590 uzrdg0i 12758 uzrdgsuci 12759 hashkf 13119 cshimadifsn 13575 cshimadifsn0 13576 shftfn 13813 phimullem 15484 imasaddvallem 16189 imasvscaval 16198 frmdss2 17400 lcomfsupp 18903 lidlval 19192 rspval 19193 psrbagev1 19510 psgnghm 19926 frlmsslsp 20135 iscldtop 20899 2ndcomap 21261 qtoptop 21503 basqtop 21514 qtoprest 21520 kqfvima 21533 isr0 21540 kqreglem1 21544 kqnrmlem1 21546 kqnrmlem2 21547 elrnust 22028 ustbas 22031 uniiccdif 23346 fcoinver 29418 mdetpmtr1 29889 fimaproj 29900 sseqf 30454 sseqfv2 30456 elorrvc 30525 bnj142OLD 30794 bnj930 30840 bnj1371 31097 bnj1497 31128 frrlem2 31781 noextendseq 31820 madeval 31935 filnetlem4 32376 heibor1lem 33608 diaf11N 36338 dibf11N 36450 dibclN 36451 dihintcl 36633 ismrc 37264 dnnumch1 37614 aomclem4 37627 aomclem6 37629 ntrclsfv1 38353 ntrneifv1 38377 fvelimad 39458 fnfvimad 39459 fvelima2 39475 climrescn 39980 icccncfext 40100 stoweidlem29 40246 stoweidlem59 40276 ovolval4lem1 40863 fnresfnco 41206 funcoressn 41207 fnbrafvb 41234 tz6.12-afv 41253 afvco2 41256 plusfreseq 41772 dfrngc2 41972 dfringc2 42018 rngcresringcat 42030 mndpsuppss 42152 mndpfsupp 42157 |
Copyright terms: Public domain | W3C validator |