![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > abeq2i | Structured version Visualization version GIF version |
Description: Equality of a class variable and a class abstraction (inference rule). (Contributed by NM, 3-Apr-1996.) (Proof shortened by Wolf Lammen, 15-Nov-2019.) |
Ref | Expression |
---|---|
abeq2i.1 | ⊢ 𝐴 = {𝑥 ∣ 𝜑} |
Ref | Expression |
---|---|
abeq2i | ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abeq2i.1 | . . . 4 ⊢ 𝐴 = {𝑥 ∣ 𝜑} | |
2 | 1 | a1i 11 | . . 3 ⊢ (⊤ → 𝐴 = {𝑥 ∣ 𝜑}) |
3 | 2 | abeq2d 2734 | . 2 ⊢ (⊤ → (𝑥 ∈ 𝐴 ↔ 𝜑)) |
4 | 3 | trud 1493 | 1 ⊢ (𝑥 ∈ 𝐴 ↔ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1483 ⊤wtru 1484 ∈ wcel 1990 {cab 2608 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-12 2047 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-an 386 df-tru 1486 df-ex 1705 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 |
This theorem is referenced by: abeq1i 2736 rabid 3116 vex 3203 csbco 3543 csbnestgf 3996 ssrel 5207 relopabi 5245 cnv0 5535 funcnv3 5959 opabiota 6261 zfrep6 7134 wfrlem2 7415 wfrlem3 7416 wfrlem4 7418 wfrdmcl 7423 tfrlem4 7475 tfrlem8 7480 tfrlem9 7481 ixpn0 7940 mapsnen 8035 sbthlem1 8070 dffi3 8337 1idpr 9851 ltexprlem1 9858 ltexprlem2 9859 ltexprlem3 9860 ltexprlem4 9861 ltexprlem6 9863 ltexprlem7 9864 reclem2pr 9870 reclem3pr 9871 reclem4pr 9872 supsrlem 9932 dissnref 21331 dissnlocfin 21332 txbas 21370 xkoccn 21422 xkoptsub 21457 xkoco1cn 21460 xkoco2cn 21461 xkoinjcn 21490 mbfi1fseqlem4 23485 avril1 27319 rnmpt2ss 29473 bnj1436 30910 bnj916 31003 bnj983 31021 bnj1083 31046 bnj1245 31082 bnj1311 31092 bnj1371 31097 bnj1398 31102 setinds 31683 frrlem2 31781 frrlem3 31782 frrlem4 31783 frrlem5e 31788 frrlem11 31792 bj-ififc 32566 bj-elsngl 32956 bj-projun 32982 bj-projval 32984 f1omptsnlem 33183 icoreresf 33200 finxp0 33228 finxp1o 33229 finxpsuclem 33234 sdclem1 33539 csbcom2fi 33934 csbgfi 33935 |
Copyright terms: Public domain | W3C validator |