Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj145OLD Structured version   Visualization version   GIF version

Theorem bnj145OLD 30795
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) Obsolete as of 29-Dec-2018. This is now incorporated into the proof of fnsnb 6432.
Hypotheses
Ref Expression
bnj145OLD.1 𝐴 ∈ V
bnj145OLD.2 (𝐹𝐴) ∈ V
Assertion
Ref Expression
bnj145OLD (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})

Proof of Theorem bnj145OLD
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 bnj142OLD 30794 . . . . 5 (𝐹 Fn {𝐴} → (𝑢𝐹𝑢 = ⟨𝐴, (𝐹𝐴)⟩))
2 df-fn 5891 . . . . . . . 8 (𝐹 Fn {𝐴} ↔ (Fun 𝐹 ∧ dom 𝐹 = {𝐴}))
3 bnj145OLD.1 . . . . . . . . . . 11 𝐴 ∈ V
43snid 4208 . . . . . . . . . 10 𝐴 ∈ {𝐴}
5 eleq2 2690 . . . . . . . . . 10 (dom 𝐹 = {𝐴} → (𝐴 ∈ dom 𝐹𝐴 ∈ {𝐴}))
64, 5mpbiri 248 . . . . . . . . 9 (dom 𝐹 = {𝐴} → 𝐴 ∈ dom 𝐹)
76anim2i 593 . . . . . . . 8 ((Fun 𝐹 ∧ dom 𝐹 = {𝐴}) → (Fun 𝐹𝐴 ∈ dom 𝐹))
82, 7sylbi 207 . . . . . . 7 (𝐹 Fn {𝐴} → (Fun 𝐹𝐴 ∈ dom 𝐹))
9 funfvop 6329 . . . . . . 7 ((Fun 𝐹𝐴 ∈ dom 𝐹) → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
108, 9syl 17 . . . . . 6 (𝐹 Fn {𝐴} → ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹)
11 eleq1 2689 . . . . . 6 (𝑢 = ⟨𝐴, (𝐹𝐴)⟩ → (𝑢𝐹 ↔ ⟨𝐴, (𝐹𝐴)⟩ ∈ 𝐹))
1210, 11syl5ibrcom 237 . . . . 5 (𝐹 Fn {𝐴} → (𝑢 = ⟨𝐴, (𝐹𝐴)⟩ → 𝑢𝐹))
131, 12impbid 202 . . . 4 (𝐹 Fn {𝐴} → (𝑢𝐹𝑢 = ⟨𝐴, (𝐹𝐴)⟩))
1413alrimiv 1855 . . 3 (𝐹 Fn {𝐴} → ∀𝑢(𝑢𝐹𝑢 = ⟨𝐴, (𝐹𝐴)⟩))
15 velsn 4193 . . . . 5 (𝑢 ∈ {⟨𝐴, (𝐹𝐴)⟩} ↔ 𝑢 = ⟨𝐴, (𝐹𝐴)⟩)
1615bibi2i 327 . . . 4 ((𝑢𝐹𝑢 ∈ {⟨𝐴, (𝐹𝐴)⟩}) ↔ (𝑢𝐹𝑢 = ⟨𝐴, (𝐹𝐴)⟩))
1716albii 1747 . . 3 (∀𝑢(𝑢𝐹𝑢 ∈ {⟨𝐴, (𝐹𝐴)⟩}) ↔ ∀𝑢(𝑢𝐹𝑢 = ⟨𝐴, (𝐹𝐴)⟩))
1814, 17sylibr 224 . 2 (𝐹 Fn {𝐴} → ∀𝑢(𝑢𝐹𝑢 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
19 dfcleq 2616 . 2 (𝐹 = {⟨𝐴, (𝐹𝐴)⟩} ↔ ∀𝑢(𝑢𝐹𝑢 ∈ {⟨𝐴, (𝐹𝐴)⟩}))
2018, 19sylibr 224 1 (𝐹 Fn {𝐴} → 𝐹 = {⟨𝐴, (𝐹𝐴)⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1481   = wceq 1483  wcel 1990  Vcvv 3200  {csn 4177  cop 4183  dom cdm 5114  Fun wfun 5882   Fn wfn 5883  cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator