Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj145OLD Structured version   Visualization version   Unicode version

Theorem bnj145OLD 30795
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.) Obsolete as of 29-Dec-2018. This is now incorporated into the proof of fnsnb 6432.
Hypotheses
Ref Expression
bnj145OLD.1  |-  A  e. 
_V
bnj145OLD.2  |-  ( F `
 A )  e. 
_V
Assertion
Ref Expression
bnj145OLD  |-  ( F  Fn  { A }  ->  F  =  { <. A ,  ( F `  A ) >. } )

Proof of Theorem bnj145OLD
Dummy variable  u is distinct from all other variables.
StepHypRef Expression
1 bnj142OLD 30794 . . . . 5  |-  ( F  Fn  { A }  ->  ( u  e.  F  ->  u  =  <. A , 
( F `  A
) >. ) )
2 df-fn 5891 . . . . . . . 8  |-  ( F  Fn  { A }  <->  ( Fun  F  /\  dom  F  =  { A }
) )
3 bnj145OLD.1 . . . . . . . . . . 11  |-  A  e. 
_V
43snid 4208 . . . . . . . . . 10  |-  A  e. 
{ A }
5 eleq2 2690 . . . . . . . . . 10  |-  ( dom 
F  =  { A }  ->  ( A  e. 
dom  F  <->  A  e.  { A } ) )
64, 5mpbiri 248 . . . . . . . . 9  |-  ( dom 
F  =  { A }  ->  A  e.  dom  F )
76anim2i 593 . . . . . . . 8  |-  ( ( Fun  F  /\  dom  F  =  { A }
)  ->  ( Fun  F  /\  A  e.  dom  F ) )
82, 7sylbi 207 . . . . . . 7  |-  ( F  Fn  { A }  ->  ( Fun  F  /\  A  e.  dom  F ) )
9 funfvop 6329 . . . . . . 7  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
108, 9syl 17 . . . . . 6  |-  ( F  Fn  { A }  -> 
<. A ,  ( F `
 A ) >.  e.  F )
11 eleq1 2689 . . . . . 6  |-  ( u  =  <. A ,  ( F `  A )
>.  ->  ( u  e.  F  <->  <. A ,  ( F `  A )
>.  e.  F ) )
1210, 11syl5ibrcom 237 . . . . 5  |-  ( F  Fn  { A }  ->  ( u  =  <. A ,  ( F `  A ) >.  ->  u  e.  F ) )
131, 12impbid 202 . . . 4  |-  ( F  Fn  { A }  ->  ( u  e.  F  <->  u  =  <. A ,  ( F `  A )
>. ) )
1413alrimiv 1855 . . 3  |-  ( F  Fn  { A }  ->  A. u ( u  e.  F  <->  u  =  <. A ,  ( F `
 A ) >.
) )
15 velsn 4193 . . . . 5  |-  ( u  e.  { <. A , 
( F `  A
) >. }  <->  u  =  <. A ,  ( F `
 A ) >.
)
1615bibi2i 327 . . . 4  |-  ( ( u  e.  F  <->  u  e.  {
<. A ,  ( F `
 A ) >. } )  <->  ( u  e.  F  <->  u  =  <. A ,  ( F `  A ) >. )
)
1716albii 1747 . . 3  |-  ( A. u ( u  e.  F  <->  u  e.  { <. A ,  ( F `  A ) >. } )  <->  A. u ( u  e.  F  <->  u  =  <. A ,  ( F `  A ) >. )
)
1814, 17sylibr 224 . 2  |-  ( F  Fn  { A }  ->  A. u ( u  e.  F  <->  u  e.  {
<. A ,  ( F `
 A ) >. } ) )
19 dfcleq 2616 . 2  |-  ( F  =  { <. A , 
( F `  A
) >. }  <->  A. u
( u  e.  F  <->  u  e.  { <. A , 
( F `  A
) >. } ) )
2018, 19sylibr 224 1  |-  ( F  Fn  { A }  ->  F  =  { <. A ,  ( F `  A ) >. } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384   A.wal 1481    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183   dom cdm 5114   Fun wfun 5882    Fn wfn 5883   ` cfv 5888
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator