![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj521 | Structured version Visualization version GIF version |
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj521 | ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elirr 8505 | . . . 4 ⊢ ¬ 𝐴 ∈ 𝐴 | |
2 | elin 3796 | . . . . . 6 ⊢ (𝑥 ∈ (𝐴 ∩ {𝐴}) ↔ (𝑥 ∈ 𝐴 ∧ 𝑥 ∈ {𝐴})) | |
3 | velsn 4193 | . . . . . . 7 ⊢ (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴) | |
4 | eleq1 2689 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ 𝐴 ↔ 𝐴 ∈ 𝐴)) | |
5 | 4 | biimpac 503 | . . . . . . 7 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐴) → 𝐴 ∈ 𝐴) |
6 | 3, 5 | sylan2b 492 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 ∈ {𝐴}) → 𝐴 ∈ 𝐴) |
7 | 2, 6 | sylbi 207 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴 ∈ 𝐴) |
8 | 7 | exlimiv 1858 | . . . 4 ⊢ (∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) → 𝐴 ∈ 𝐴) |
9 | 1, 8 | mto 188 | . . 3 ⊢ ¬ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴}) |
10 | n0 3931 | . . 3 ⊢ ((𝐴 ∩ {𝐴}) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐴 ∩ {𝐴})) | |
11 | 9, 10 | mtbir 313 | . 2 ⊢ ¬ (𝐴 ∩ {𝐴}) ≠ ∅ |
12 | nne 2798 | . 2 ⊢ (¬ (𝐴 ∩ {𝐴}) ≠ ∅ ↔ (𝐴 ∩ {𝐴}) = ∅) | |
13 | 11, 12 | mpbi 220 | 1 ⊢ (𝐴 ∩ {𝐴}) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ≠ wne 2794 ∩ cin 3573 ∅c0 3915 {csn 4177 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-nul 3916 df-sn 4178 df-pr 4180 |
This theorem is referenced by: bnj927 30839 bnj535 30960 |
Copyright terms: Public domain | W3C validator |