Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj535 Structured version   Visualization version   GIF version

Theorem bnj535 30960
Description: Technical lemma for bnj852 30991. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj535.1 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj535.2 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj535.3 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
bnj535.4 (𝜏 ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
Assertion
Ref Expression
bnj535 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝐺(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj535
StepHypRef Expression
1 bnj422 30781 . . 3 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚𝑅 FrSe 𝐴𝜏))
2 bnj251 30768 . . 3 ((𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚𝑅 FrSe 𝐴𝜏) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))))
31, 2bitri 264 . 2 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) ↔ (𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))))
4 fvex 6201 . . . . . . . . 9 (𝑓𝑝) ∈ V
5 bnj535.1 . . . . . . . . . 10 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
6 bnj535.2 . . . . . . . . . 10 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
7 bnj535.4 . . . . . . . . . 10 (𝜏 ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
85, 6, 7bnj518 30956 . . . . . . . . 9 ((𝑅 FrSe 𝐴𝜏) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
9 iunexg 7143 . . . . . . . . 9 (((𝑓𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
104, 8, 9sylancr 695 . . . . . . . 8 ((𝑅 FrSe 𝐴𝜏) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
11 vex 3203 . . . . . . . . 9 𝑚 ∈ V
1211bnj519 30804 . . . . . . . 8 ( 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → Fun {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
1310, 12syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏) → Fun {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
14 dmsnopg 5606 . . . . . . . 8 ( 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → dom {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {𝑚})
1510, 14syl 17 . . . . . . 7 ((𝑅 FrSe 𝐴𝜏) → dom {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} = {𝑚})
1613, 15bnj1422 30908 . . . . . 6 ((𝑅 FrSe 𝐴𝜏) → {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚})
17 bnj521 30805 . . . . . . 7 (𝑚 ∩ {𝑚}) = ∅
18 fnun 5997 . . . . . . 7 (((𝑓 Fn 𝑚 ∧ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚}) ∧ (𝑚 ∩ {𝑚}) = ∅) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
1917, 18mpan2 707 . . . . . 6 ((𝑓 Fn 𝑚 ∧ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩} Fn {𝑚}) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
2016, 19sylan2 491 . . . . 5 ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
21 bnj535.3 . . . . . 6 𝐺 = (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩})
2221fneq1i 5985 . . . . 5 (𝐺 Fn (𝑚 ∪ {𝑚}) ↔ (𝑓 ∪ {⟨𝑚, 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅)⟩}) Fn (𝑚 ∪ {𝑚}))
2320, 22sylibr 224 . . . 4 ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → 𝐺 Fn (𝑚 ∪ {𝑚}))
24 fneq2 5980 . . . 4 (𝑛 = (𝑚 ∪ {𝑚}) → (𝐺 Fn 𝑛𝐺 Fn (𝑚 ∪ {𝑚})))
2523, 24syl5ibr 236 . . 3 (𝑛 = (𝑚 ∪ {𝑚}) → ((𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏)) → 𝐺 Fn 𝑛))
2625imp 445 . 2 ((𝑛 = (𝑚 ∪ {𝑚}) ∧ (𝑓 Fn 𝑚 ∧ (𝑅 FrSe 𝐴𝜏))) → 𝐺 Fn 𝑛)
273, 26sylbi 207 1 ((𝑅 FrSe 𝐴𝜏𝑛 = (𝑚 ∪ {𝑚}) ∧ 𝑓 Fn 𝑚) → 𝐺 Fn 𝑛)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  cun 3572  cin 3573  c0 3915  {csn 4177  cop 4183   ciun 4520  dom cdm 5114  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  cfv 5888  ωcom 7065  w-bnj17 30752   predc-bnj14 30754   FrSe w-bnj15 30758
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-un 6949  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-bnj17 30753  df-bnj14 30755  df-bnj13 30757  df-bnj15 30759
This theorem is referenced by:  bnj543  30963
  Copyright terms: Public domain W3C validator