| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0 | Structured version Visualization version GIF version | ||
| Description: A nonempty class has at least one element. Proposition 5.17(1) of [TakeutiZaring] p. 20. (Contributed by NM, 29-Sep-2006.) |
| Ref | Expression |
|---|---|
| n0 | ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2764 | . 2 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | n0f 3927 | 1 ⊢ (𝐴 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐴) |
| Copyright terms: Public domain | W3C validator |