Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj521 Structured version   Visualization version   Unicode version

Theorem bnj521 30805
Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj521  |-  ( A  i^i  { A }
)  =  (/)

Proof of Theorem bnj521
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 elirr 8505 . . . 4  |-  -.  A  e.  A
2 elin 3796 . . . . . 6  |-  ( x  e.  ( A  i^i  { A } )  <->  ( x  e.  A  /\  x  e.  { A } ) )
3 velsn 4193 . . . . . . 7  |-  ( x  e.  { A }  <->  x  =  A )
4 eleq1 2689 . . . . . . . 8  |-  ( x  =  A  ->  (
x  e.  A  <->  A  e.  A ) )
54biimpac 503 . . . . . . 7  |-  ( ( x  e.  A  /\  x  =  A )  ->  A  e.  A )
63, 5sylan2b 492 . . . . . 6  |-  ( ( x  e.  A  /\  x  e.  { A } )  ->  A  e.  A )
72, 6sylbi 207 . . . . 5  |-  ( x  e.  ( A  i^i  { A } )  ->  A  e.  A )
87exlimiv 1858 . . . 4  |-  ( E. x  x  e.  ( A  i^i  { A } )  ->  A  e.  A )
91, 8mto 188 . . 3  |-  -.  E. x  x  e.  ( A  i^i  { A }
)
10 n0 3931 . . 3  |-  ( ( A  i^i  { A } )  =/=  (/)  <->  E. x  x  e.  ( A  i^i  { A } ) )
119, 10mtbir 313 . 2  |-  -.  ( A  i^i  { A }
)  =/=  (/)
12 nne 2798 . 2  |-  ( -.  ( A  i^i  { A } )  =/=  (/)  <->  ( A  i^i  { A } )  =  (/) )
1311, 12mpbi 220 1  |-  ( A  i^i  { A }
)  =  (/)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    i^i cin 3573   (/)c0 3915   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-nul 3916  df-sn 4178  df-pr 4180
This theorem is referenced by:  bnj927  30839  bnj535  30960
  Copyright terms: Public domain W3C validator