Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj945 Structured version   Visualization version   GIF version

Theorem bnj945 30844
Description: Technical lemma for bnj69 31078. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj945.1 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj945 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))

Proof of Theorem bnj945
StepHypRef Expression
1 fndm 5990 . . . . . . 7 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
21ad2antll 765 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → dom 𝑓 = 𝑛)
32eleq2d 2687 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (𝐴 ∈ dom 𝑓𝐴𝑛))
43pm5.32i 669 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
5 bnj945.1 . . . . . . . . 9 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
65bnj941 30843 . . . . . . . 8 (𝐶 ∈ V → ((𝑝 = suc 𝑛𝑓 Fn 𝑛) → 𝐺 Fn 𝑝))
76imp 445 . . . . . . 7 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → 𝐺 Fn 𝑝)
87bnj930 30840 . . . . . 6 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → Fun 𝐺)
95bnj931 30841 . . . . . 6 𝑓𝐺
108, 9jctir 561 . . . . 5 ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) → (Fun 𝐺𝑓𝐺))
1110anim1i 592 . . . 4 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴 ∈ dom 𝑓) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
124, 11sylbir 225 . . 3 (((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛) → ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
13 df-bnj17 30753 . . . 4 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛))
14 3ancomb 1047 . . . . . 6 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛))
15 3anass 1042 . . . . . 6 ((𝐶 ∈ V ∧ 𝑝 = suc 𝑛𝑓 Fn 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1614, 15bitri 264 . . . . 5 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ↔ (𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)))
1716anbi1i 731 . . . 4 (((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛) ∧ 𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
1813, 17bitri 264 . . 3 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) ↔ ((𝐶 ∈ V ∧ (𝑝 = suc 𝑛𝑓 Fn 𝑛)) ∧ 𝐴𝑛))
19 df-3an 1039 . . 3 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) ↔ ((Fun 𝐺𝑓𝐺) ∧ 𝐴 ∈ dom 𝑓))
2012, 18, 193imtr4i 281 . 2 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓))
21 funssfv 6209 . 2 ((Fun 𝐺𝑓𝐺𝐴 ∈ dom 𝑓) → (𝐺𝐴) = (𝑓𝐴))
2220, 21syl 17 1 ((𝐶 ∈ V ∧ 𝑓 Fn 𝑛𝑝 = suc 𝑛𝐴𝑛) → (𝐺𝐴) = (𝑓𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  wss 3574  {csn 4177  cop 4183  dom cdm 5114  suc csuc 5725  Fun wfun 5882   Fn wfn 5883  cfv 5888  w-bnj17 30752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-res 5126  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-bnj17 30753
This theorem is referenced by:  bnj966  31014  bnj967  31015  bnj1006  31029
  Copyright terms: Public domain W3C validator