![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funssfv | Structured version Visualization version GIF version |
Description: The value of a member of the domain of a subclass of a function. (Contributed by NM, 15-Aug-1994.) |
Ref | Expression |
---|---|
funssfv | ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvres 6207 | . . . 4 ⊢ (𝐴 ∈ dom 𝐺 → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐹‘𝐴)) | |
2 | 1 | eqcomd 2628 | . . 3 ⊢ (𝐴 ∈ dom 𝐺 → (𝐹‘𝐴) = ((𝐹 ↾ dom 𝐺)‘𝐴)) |
3 | funssres 5930 | . . . 4 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → (𝐹 ↾ dom 𝐺) = 𝐺) | |
4 | 3 | fveq1d 6193 | . . 3 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) → ((𝐹 ↾ dom 𝐺)‘𝐴) = (𝐺‘𝐴)) |
5 | 2, 4 | sylan9eqr 2678 | . 2 ⊢ (((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹) ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
6 | 5 | 3impa 1259 | 1 ⊢ ((Fun 𝐹 ∧ 𝐺 ⊆ 𝐹 ∧ 𝐴 ∈ dom 𝐺) → (𝐹‘𝐴) = (𝐺‘𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ⊆ wss 3574 dom cdm 5114 ↾ cres 5116 Fun wfun 5882 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-res 5126 df-iota 5851 df-fun 5890 df-fv 5896 |
This theorem is referenced by: funsssuppss 7321 wfrlem12 7426 wfrlem14 7428 tfrlem9 7481 tfrlem11 7484 ac6sfi 8204 axdc3lem2 9273 axdc3lem4 9275 imasvscaval 16198 pserdv 24183 subgruhgredgd 26176 subumgredg2 26177 subupgr 26179 sspn 27591 bnj945 30844 bnj1502 30918 bnj545 30965 bnj548 30967 subfacp1lem2a 31162 subfacp1lem2b 31163 subfacp1lem5 31166 cvmliftlem10 31276 cvmliftlem13 31278 frrlem11 31792 |
Copyright terms: Public domain | W3C validator |