Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj98 Structured version   Visualization version   GIF version

Theorem bnj98 30937
Description: Technical lemma for bnj150 30946. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Assertion
Ref Expression
bnj98 𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))

Proof of Theorem bnj98
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . 6 𝑖 ∈ V
21sucid 5804 . . . . 5 𝑖 ∈ suc 𝑖
32n0ii 3922 . . . 4 ¬ suc 𝑖 = ∅
4 df-suc 5729 . . . . . 6 suc 𝑖 = (𝑖 ∪ {𝑖})
5 df-un 3579 . . . . . 6 (𝑖 ∪ {𝑖}) = {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})}
64, 5eqtri 2644 . . . . 5 suc 𝑖 = {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})}
7 df1o2 7572 . . . . . . 7 1𝑜 = {∅}
86, 7eleq12i 2694 . . . . . 6 (suc 𝑖 ∈ 1𝑜 ↔ {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} ∈ {∅})
9 elsni 4194 . . . . . 6 ({𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} ∈ {∅} → {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} = ∅)
108, 9sylbi 207 . . . . 5 (suc 𝑖 ∈ 1𝑜 → {𝑥 ∣ (𝑥𝑖𝑥 ∈ {𝑖})} = ∅)
116, 10syl5eq 2668 . . . 4 (suc 𝑖 ∈ 1𝑜 → suc 𝑖 = ∅)
123, 11mto 188 . . 3 ¬ suc 𝑖 ∈ 1𝑜
1312pm2.21i 116 . 2 (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
1413rgenw 2924 1 𝑖 ∈ ω (suc 𝑖 ∈ 1𝑜 → (𝐹‘suc 𝑖) = 𝑦 ∈ (𝐹𝑖) pred(𝑦, 𝐴, 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383   = wceq 1483  wcel 1990  {cab 2608  wral 2912  cun 3572  c0 3915  {csn 4177   ciun 4520  suc csuc 5725  cfv 5888  ωcom 7065  1𝑜c1o 7553   predc-bnj14 30754
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-un 3579  df-nul 3916  df-sn 4178  df-suc 5729  df-1o 7560
This theorem is referenced by:  bnj150  30946
  Copyright terms: Public domain W3C validator