MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eleq12i Structured version   Visualization version   GIF version

Theorem eleq12i 2694
Description: Inference from equality to equivalence of membership. (Contributed by NM, 31-May-1994.)
Hypotheses
Ref Expression
eleq1i.1 𝐴 = 𝐵
eleq12i.2 𝐶 = 𝐷
Assertion
Ref Expression
eleq12i (𝐴𝐶𝐵𝐷)

Proof of Theorem eleq12i
StepHypRef Expression
1 eleq12i.2 . . 3 𝐶 = 𝐷
21eleq2i 2693 . 2 (𝐴𝐶𝐴𝐷)
3 eleq1i.1 . . 3 𝐴 = 𝐵
43eleq1i 2692 . 2 (𝐴𝐷𝐵𝐷)
52, 4bitri 264 1 (𝐴𝐶𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1483  wcel 1990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705  df-cleq 2615  df-clel 2618
This theorem is referenced by:  sbcel12  3983  zclmncvs  22948  gausslemma2dlem4  25094  bnj98  30937  elmpst  31433  elmpps  31470  sbcel12gOLD  38754  unirnmapsn  39406
  Copyright terms: Public domain W3C validator