![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cdaf | Structured version Visualization version GIF version |
Description: The codomain function is a function from arrows to objects. (Contributed by Mario Carneiro, 11-Jan-2017.) |
Ref | Expression |
---|---|
arwrcl.a | ⊢ 𝐴 = (Arrow‘𝐶) |
arwdm.b | ⊢ 𝐵 = (Base‘𝐶) |
Ref | Expression |
---|---|
cdaf | ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fo2nd 7189 | . . . . . 6 ⊢ 2nd :V–onto→V | |
2 | fofn 6117 | . . . . . 6 ⊢ (2nd :V–onto→V → 2nd Fn V) | |
3 | 1, 2 | ax-mp 5 | . . . . 5 ⊢ 2nd Fn V |
4 | fo1st 7188 | . . . . . 6 ⊢ 1st :V–onto→V | |
5 | fof 6115 | . . . . . 6 ⊢ (1st :V–onto→V → 1st :V⟶V) | |
6 | 4, 5 | ax-mp 5 | . . . . 5 ⊢ 1st :V⟶V |
7 | fnfco 6069 | . . . . 5 ⊢ ((2nd Fn V ∧ 1st :V⟶V) → (2nd ∘ 1st ) Fn V) | |
8 | 3, 6, 7 | mp2an 708 | . . . 4 ⊢ (2nd ∘ 1st ) Fn V |
9 | df-coda 16675 | . . . . 5 ⊢ coda = (2nd ∘ 1st ) | |
10 | 9 | fneq1i 5985 | . . . 4 ⊢ (coda Fn V ↔ (2nd ∘ 1st ) Fn V) |
11 | 8, 10 | mpbir 221 | . . 3 ⊢ coda Fn V |
12 | ssv 3625 | . . 3 ⊢ 𝐴 ⊆ V | |
13 | fnssres 6004 | . . 3 ⊢ ((coda Fn V ∧ 𝐴 ⊆ V) → (coda ↾ 𝐴) Fn 𝐴) | |
14 | 11, 12, 13 | mp2an 708 | . 2 ⊢ (coda ↾ 𝐴) Fn 𝐴 |
15 | fvres 6207 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) = (coda‘𝑥)) | |
16 | arwrcl.a | . . . . 5 ⊢ 𝐴 = (Arrow‘𝐶) | |
17 | arwdm.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
18 | 16, 17 | arwcd 16698 | . . . 4 ⊢ (𝑥 ∈ 𝐴 → (coda‘𝑥) ∈ 𝐵) |
19 | 15, 18 | eqeltrd 2701 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵) |
20 | 19 | rgen 2922 | . 2 ⊢ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵 |
21 | ffnfv 6388 | . 2 ⊢ ((coda ↾ 𝐴):𝐴⟶𝐵 ↔ ((coda ↾ 𝐴) Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 ((coda ↾ 𝐴)‘𝑥) ∈ 𝐵)) | |
22 | 14, 20, 21 | mpbir2an 955 | 1 ⊢ (coda ↾ 𝐴):𝐴⟶𝐵 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 ⊆ wss 3574 ↾ cres 5116 ∘ ccom 5118 Fn wfn 5883 ⟶wf 5884 –onto→wfo 5886 ‘cfv 5888 1st c1st 7166 2nd c2nd 7167 Basecbs 15857 codaccoda 16671 Arrowcarw 16672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-iun 4522 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-ov 6653 df-1st 7168 df-2nd 7169 df-doma 16674 df-coda 16675 df-homa 16676 df-arw 16677 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |