MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ceqsex2v Structured version   Visualization version   GIF version

Theorem ceqsex2v 3245
Description: Elimination of two existential quantifiers, using implicit substitution. (Contributed by Scott Fenton, 7-Jun-2006.)
Hypotheses
Ref Expression
ceqsex2v.1 𝐴 ∈ V
ceqsex2v.2 𝐵 ∈ V
ceqsex2v.3 (𝑥 = 𝐴 → (𝜑𝜓))
ceqsex2v.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ceqsex2v (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)

Proof of Theorem ceqsex2v
StepHypRef Expression
1 nfv 1843 . 2 𝑥𝜓
2 nfv 1843 . 2 𝑦𝜒
3 ceqsex2v.1 . 2 𝐴 ∈ V
4 ceqsex2v.2 . 2 𝐵 ∈ V
5 ceqsex2v.3 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
6 ceqsex2v.4 . 2 (𝑦 = 𝐵 → (𝜓𝜒))
71, 2, 3, 4, 5, 6ceqsex2 3244 1 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵𝜑) ↔ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1037   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by:  ceqsex3v  3246  ceqsex4v  3247  ispos  16947  elfuns  32022  brimg  32044  brapply  32045  brsuccf  32048  brrestrict  32056  dfrdg4  32058  diblsmopel  36460
  Copyright terms: Public domain W3C validator