| Step | Hyp | Ref
| Expression |
| 1 | | diblsmopel.k |
. . 3
⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 2 | | diblsmopel.x |
. . . 4
⊢ (𝜑 → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
| 3 | | diblsmopel.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 4 | | diblsmopel.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 5 | | diblsmopel.h |
. . . . 5
⊢ 𝐻 = (LHyp‘𝐾) |
| 6 | | diblsmopel.u |
. . . . 5
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| 7 | | diblsmopel.i |
. . . . 5
⊢ 𝐼 = ((DIsoB‘𝐾)‘𝑊) |
| 8 | | eqid 2622 |
. . . . 5
⊢
(LSubSp‘𝑈) =
(LSubSp‘𝑈) |
| 9 | 3, 4, 5, 6, 7, 8 | diblss 36459 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
| 10 | 1, 2, 9 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝐼‘𝑋) ∈ (LSubSp‘𝑈)) |
| 11 | | diblsmopel.y |
. . . 4
⊢ (𝜑 → (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) |
| 12 | 3, 4, 5, 6, 7, 8 | diblss 36459 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
| 13 | 1, 11, 12 | syl2anc 693 |
. . 3
⊢ (𝜑 → (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) |
| 14 | | eqid 2622 |
. . . 4
⊢
(+g‘𝑈) = (+g‘𝑈) |
| 15 | | diblsmopel.p |
. . . 4
⊢ ✚ =
(LSSum‘𝑈) |
| 16 | 5, 6, 14, 8, 15 | dvhopellsm 36406 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐼‘𝑋) ∈ (LSubSp‘𝑈) ∧ (𝐼‘𝑌) ∈ (LSubSp‘𝑈)) → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ✚ (𝐼‘𝑌)) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
| 17 | 1, 10, 13, 16 | syl3anc 1326 |
. 2
⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ✚ (𝐼‘𝑌)) ↔ ∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
| 18 | | excom 2042 |
. . . 4
⊢
(∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑧∃𝑦∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))) |
| 19 | | diblsmopel.t |
. . . . . . . . . . . . 13
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| 20 | | diblsmopel.o |
. . . . . . . . . . . . 13
⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 21 | | diblsmopel.j |
. . . . . . . . . . . . 13
⊢ 𝐽 = ((DIsoA‘𝐾)‘𝑊) |
| 22 | 3, 4, 5, 19, 20, 21, 7 | dibopelval2 36434 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ↔ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂))) |
| 23 | 1, 2, 22 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ↔ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂))) |
| 24 | 3, 4, 5, 19, 20, 21, 7 | dibopelval2 36434 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌) ↔ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂))) |
| 25 | 1, 11, 24 | syl2anc 693 |
. . . . . . . . . . 11
⊢ (𝜑 → (〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌) ↔ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂))) |
| 26 | 23, 25 | anbi12d 747 |
. . . . . . . . . 10
⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂)))) |
| 27 | | an4 865 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝑦 = 𝑂 ∧ 𝑤 = 𝑂))) |
| 28 | | ancom 466 |
. . . . . . . . . . 11
⊢ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝑦 = 𝑂 ∧ 𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)))) |
| 29 | 27, 28 | bitri 264 |
. . . . . . . . . 10
⊢ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑦 = 𝑂) ∧ (𝑧 ∈ (𝐽‘𝑌) ∧ 𝑤 = 𝑂)) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)))) |
| 30 | 26, 29 | syl6bb 276 |
. . . . . . . . 9
⊢ (𝜑 → ((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))))) |
| 31 | 30 | anbi1d 741 |
. . . . . . . 8
⊢ (𝜑 → (((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ (((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
| 32 | | anass 681 |
. . . . . . . . 9
⊢ ((((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
| 33 | | df-3an 1039 |
. . . . . . . . 9
⊢ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))) ↔ ((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
| 34 | 32, 33 | bitr4i 267 |
. . . . . . . 8
⊢ ((((𝑦 = 𝑂 ∧ 𝑤 = 𝑂) ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ (𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
| 35 | 31, 34 | syl6bb 276 |
. . . . . . 7
⊢ (𝜑 → (((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ (𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))))) |
| 36 | 35 | 2exbidv 1852 |
. . . . . 6
⊢ (𝜑 → (∃𝑦∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑦∃𝑤(𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))))) |
| 37 | | fvex 6201 |
. . . . . . . . . . 11
⊢
((LTrn‘𝐾)‘𝑊) ∈ V |
| 38 | 19, 37 | eqeltri 2697 |
. . . . . . . . . 10
⊢ 𝑇 ∈ V |
| 39 | 38 | mptex 6486 |
. . . . . . . . 9
⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) ∈ V |
| 40 | 20, 39 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝑂 ∈ V |
| 41 | | opeq2 4403 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑂 → 〈𝑥, 𝑦〉 = 〈𝑥, 𝑂〉) |
| 42 | 41 | oveq1d 6665 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑂 → (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉) = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉)) |
| 43 | 42 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑦 = 𝑂 → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉) ↔ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉))) |
| 44 | 43 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑦 = 𝑂 → (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉)))) |
| 45 | | opeq2 4403 |
. . . . . . . . . . 11
⊢ (𝑤 = 𝑂 → 〈𝑧, 𝑤〉 = 〈𝑧, 𝑂〉) |
| 46 | 45 | oveq2d 6666 |
. . . . . . . . . 10
⊢ (𝑤 = 𝑂 → (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉) = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉)) |
| 47 | 46 | eqeq2d 2632 |
. . . . . . . . 9
⊢ (𝑤 = 𝑂 → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉) ↔ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉))) |
| 48 | 47 | anbi2d 740 |
. . . . . . . 8
⊢ (𝑤 = 𝑂 → (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉)))) |
| 49 | 40, 40, 44, 48 | ceqsex2v 3245 |
. . . . . . 7
⊢
(∃𝑦∃𝑤(𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉))) |
| 50 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 51 | 2 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) |
| 52 | | simprl 794 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑥 ∈ (𝐽‘𝑋)) |
| 53 | 3, 4, 5, 19, 21 | diael 36332 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊) ∧ 𝑥 ∈ (𝐽‘𝑋)) → 𝑥 ∈ 𝑇) |
| 54 | 50, 51, 52, 53 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑥 ∈ 𝑇) |
| 55 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢
((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) |
| 56 | 3, 5, 19, 55, 20 | tendo0cl 36078 |
. . . . . . . . . . . 12
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 57 | 50, 56 | syl 17 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) |
| 58 | 11 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) |
| 59 | | simprr 796 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑧 ∈ (𝐽‘𝑌)) |
| 60 | 3, 4, 5, 19, 21 | diael 36332 |
. . . . . . . . . . . 12
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊) ∧ 𝑧 ∈ (𝐽‘𝑌)) → 𝑧 ∈ 𝑇) |
| 61 | 50, 58, 59, 60 | syl3anc 1326 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → 𝑧 ∈ 𝑇) |
| 62 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(Scalar‘𝑈) =
(Scalar‘𝑈) |
| 63 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(+g‘(Scalar‘𝑈)) =
(+g‘(Scalar‘𝑈)) |
| 64 | 5, 19, 55, 6, 62, 14, 63 | dvhopvadd 36382 |
. . . . . . . . . . 11
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) ∧ (𝑧 ∈ 𝑇 ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊))) → (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉) = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
| 65 | 50, 54, 57, 61, 57, 64 | syl122anc 1335 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉) = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉) |
| 66 | 65 | eqeq2d 2632 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉) ↔ 〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉)) |
| 67 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑥 ∈ V |
| 68 | | vex 3203 |
. . . . . . . . . . . 12
⊢ 𝑧 ∈ V |
| 69 | 67, 68 | coex 7118 |
. . . . . . . . . . 11
⊢ (𝑥 ∘ 𝑧) ∈ V |
| 70 | | ovex 6678 |
. . . . . . . . . . 11
⊢ (𝑂(+g‘(Scalar‘𝑈))𝑂) ∈ V |
| 71 | 69, 70 | opth2 4949 |
. . . . . . . . . 10
⊢
(〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉 ↔ (𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂))) |
| 72 | | diblsmopel.v |
. . . . . . . . . . . . . . 15
⊢ 𝑉 = ((DVecA‘𝐾)‘𝑊) |
| 73 | | eqid 2622 |
. . . . . . . . . . . . . . 15
⊢
(+g‘𝑉) = (+g‘𝑉) |
| 74 | 5, 19, 72, 73 | dvavadd 36303 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑥 ∈ 𝑇 ∧ 𝑧 ∈ 𝑇)) → (𝑥(+g‘𝑉)𝑧) = (𝑥 ∘ 𝑧)) |
| 75 | 50, 54, 61, 74 | syl12anc 1324 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑥(+g‘𝑉)𝑧) = (𝑥 ∘ 𝑧)) |
| 76 | 75 | eqeq2d 2632 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝐹 = (𝑥(+g‘𝑉)𝑧) ↔ 𝐹 = (𝑥 ∘ 𝑧))) |
| 77 | 76 | bicomd 213 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝐹 = (𝑥 ∘ 𝑧) ↔ 𝐹 = (𝑥(+g‘𝑉)𝑧))) |
| 78 | | eqid 2622 |
. . . . . . . . . . . . . . . 16
⊢ (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓)))) |
| 79 | 5, 19, 55, 6, 62, 78, 63 | dvhfplusr 36373 |
. . . . . . . . . . . . . . 15
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) →
(+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
| 80 | 50, 79 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) →
(+g‘(Scalar‘𝑈)) = (𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))) |
| 81 | 80 | oveqd 6667 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂)) |
| 82 | 3, 5, 19, 55, 20, 78 | tendo0pl 36079 |
. . . . . . . . . . . . . 14
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑂 ∈ ((TEndo‘𝐾)‘𝑊)) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
| 83 | 50, 57, 82 | syl2anc 693 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑂(𝑠 ∈ ((TEndo‘𝐾)‘𝑊), 𝑡 ∈ ((TEndo‘𝐾)‘𝑊) ↦ (𝑓 ∈ 𝑇 ↦ ((𝑠‘𝑓) ∘ (𝑡‘𝑓))))𝑂) = 𝑂) |
| 84 | 81, 83 | eqtrd 2656 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑂(+g‘(Scalar‘𝑈))𝑂) = 𝑂) |
| 85 | 84 | eqeq2d 2632 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂) ↔ 𝑆 = 𝑂)) |
| 86 | 77, 85 | anbi12d 747 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → ((𝐹 = (𝑥 ∘ 𝑧) ∧ 𝑆 = (𝑂(+g‘(Scalar‘𝑈))𝑂)) ↔ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂))) |
| 87 | 71, 86 | syl5bb 272 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (〈𝐹, 𝑆〉 = 〈(𝑥 ∘ 𝑧), (𝑂(+g‘(Scalar‘𝑈))𝑂)〉 ↔ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂))) |
| 88 | 66, 87 | bitrd 268 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌))) → (〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉) ↔ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂))) |
| 89 | 88 | pm5.32da 673 |
. . . . . . 7
⊢ (𝜑 → (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑂〉(+g‘𝑈)〈𝑧, 𝑂〉)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
| 90 | 49, 89 | syl5bb 272 |
. . . . . 6
⊢ (𝜑 → (∃𝑦∃𝑤(𝑦 = 𝑂 ∧ 𝑤 = 𝑂 ∧ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉))) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
| 91 | 36, 90 | bitrd 268 |
. . . . 5
⊢ (𝜑 → (∃𝑦∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
| 92 | 91 | exbidv 1850 |
. . . 4
⊢ (𝜑 → (∃𝑧∃𝑦∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
| 93 | 18, 92 | syl5bb 272 |
. . 3
⊢ (𝜑 → (∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
| 94 | 93 | exbidv 1850 |
. 2
⊢ (𝜑 → (∃𝑥∃𝑦∃𝑧∃𝑤((〈𝑥, 𝑦〉 ∈ (𝐼‘𝑋) ∧ 〈𝑧, 𝑤〉 ∈ (𝐼‘𝑌)) ∧ 〈𝐹, 𝑆〉 = (〈𝑥, 𝑦〉(+g‘𝑈)〈𝑧, 𝑤〉)) ↔ ∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)))) |
| 95 | | anass 681 |
. . . . . 6
⊢ ((((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ ((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂))) |
| 96 | 95 | bicomi 214 |
. . . . 5
⊢ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂)) |
| 97 | 96 | 2exbii 1775 |
. . . 4
⊢
(∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ ∃𝑥∃𝑧(((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂)) |
| 98 | | 19.41vv 1915 |
. . . 4
⊢
(∃𝑥∃𝑧(((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂)) |
| 99 | 97, 98 | bitri 264 |
. . 3
⊢
(∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂)) |
| 100 | 5, 72 | dvalvec 36315 |
. . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑉 ∈ LVec) |
| 101 | | lveclmod 19106 |
. . . . . . . . 9
⊢ (𝑉 ∈ LVec → 𝑉 ∈ LMod) |
| 102 | | eqid 2622 |
. . . . . . . . . 10
⊢
(LSubSp‘𝑉) =
(LSubSp‘𝑉) |
| 103 | 102 | lsssssubg 18958 |
. . . . . . . . 9
⊢ (𝑉 ∈ LMod →
(LSubSp‘𝑉) ⊆
(SubGrp‘𝑉)) |
| 104 | 1, 100, 101, 103 | 4syl 19 |
. . . . . . . 8
⊢ (𝜑 → (LSubSp‘𝑉) ⊆ (SubGrp‘𝑉)) |
| 105 | 3, 4, 5, 72, 21, 102 | dialss 36335 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≤ 𝑊)) → (𝐽‘𝑋) ∈ (LSubSp‘𝑉)) |
| 106 | 1, 2, 105 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝐽‘𝑋) ∈ (LSubSp‘𝑉)) |
| 107 | 104, 106 | sseldd 3604 |
. . . . . . 7
⊢ (𝜑 → (𝐽‘𝑋) ∈ (SubGrp‘𝑉)) |
| 108 | 3, 4, 5, 72, 21, 102 | dialss 36335 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≤ 𝑊)) → (𝐽‘𝑌) ∈ (LSubSp‘𝑉)) |
| 109 | 1, 11, 108 | syl2anc 693 |
. . . . . . . 8
⊢ (𝜑 → (𝐽‘𝑌) ∈ (LSubSp‘𝑉)) |
| 110 | 104, 109 | sseldd 3604 |
. . . . . . 7
⊢ (𝜑 → (𝐽‘𝑌) ∈ (SubGrp‘𝑉)) |
| 111 | | diblsmopel.q |
. . . . . . . 8
⊢ ⊕ =
(LSSum‘𝑉) |
| 112 | 73, 111 | lsmelval 18064 |
. . . . . . 7
⊢ (((𝐽‘𝑋) ∈ (SubGrp‘𝑉) ∧ (𝐽‘𝑌) ∈ (SubGrp‘𝑉)) → (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ↔ ∃𝑥 ∈ (𝐽‘𝑋)∃𝑧 ∈ (𝐽‘𝑌)𝐹 = (𝑥(+g‘𝑉)𝑧))) |
| 113 | 107, 110,
112 | syl2anc 693 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ↔ ∃𝑥 ∈ (𝐽‘𝑋)∃𝑧 ∈ (𝐽‘𝑌)𝐹 = (𝑥(+g‘𝑉)𝑧))) |
| 114 | | r2ex 3061 |
. . . . . 6
⊢
(∃𝑥 ∈
(𝐽‘𝑋)∃𝑧 ∈ (𝐽‘𝑌)𝐹 = (𝑥(+g‘𝑉)𝑧) ↔ ∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧))) |
| 115 | 113, 114 | syl6bb 276 |
. . . . 5
⊢ (𝜑 → (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ↔ ∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)))) |
| 116 | 115 | anbi1d 741 |
. . . 4
⊢ (𝜑 → ((𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂) ↔ (∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂))) |
| 117 | 116 | bicomd 213 |
. . 3
⊢ (𝜑 → ((∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ 𝐹 = (𝑥(+g‘𝑉)𝑧)) ∧ 𝑆 = 𝑂) ↔ (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂))) |
| 118 | 99, 117 | syl5bb 272 |
. 2
⊢ (𝜑 → (∃𝑥∃𝑧((𝑥 ∈ (𝐽‘𝑋) ∧ 𝑧 ∈ (𝐽‘𝑌)) ∧ (𝐹 = (𝑥(+g‘𝑉)𝑧) ∧ 𝑆 = 𝑂)) ↔ (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂))) |
| 119 | 17, 94, 118 | 3bitrd 294 |
1
⊢ (𝜑 → (〈𝐹, 𝑆〉 ∈ ((𝐼‘𝑋) ✚ (𝐼‘𝑌)) ↔ (𝐹 ∈ ((𝐽‘𝑋) ⊕ (𝐽‘𝑌)) ∧ 𝑆 = 𝑂))) |