Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brapply Structured version   Visualization version   GIF version

Theorem brapply 32045
Description: Binary relation form of the Apply function. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brapply.1 𝐴 ∈ V
brapply.2 𝐵 ∈ V
brapply.3 𝐶 ∈ V
Assertion
Ref Expression
brapply (⟨𝐴, 𝐵⟩Apply𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brapply
Dummy variables 𝑎 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snex 4908 . . . 4 {(𝐴 “ {𝐵})} ∈ V
21inex1 4799 . . 3 ({(𝐴 “ {𝐵})} ∩ Singletons ) ∈ V
3 unieq 4444 . . . . 5 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
43unieqd 4446 . . . 4 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
54eqeq2d 2632 . . 3 (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) → (𝐶 = 𝑥𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons )))
62, 5ceqsexv 3242 . 2 (∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥) ↔ 𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7 df-apply 31980 . . . 4 Apply = (( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))
87breqi 4659 . . 3 (⟨𝐴, 𝐵⟩Apply𝐶 ↔ ⟨𝐴, 𝐵⟩(( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐶)
9 opex 4932 . . . 4 𝐴, 𝐵⟩ ∈ V
10 brapply.3 . . . 4 𝐶 ∈ V
119, 10brco 5292 . . 3 (⟨𝐴, 𝐵⟩(( Bigcup Bigcup ) ∘ (((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton))))𝐶 ↔ ∃𝑥(⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶))
12 vex 3203 . . . . . . 7 𝑥 ∈ V
139, 12brco 5292 . . . . . 6 (⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥 ↔ ∃𝑦(⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥))
14 vex 3203 . . . . . . . . . 10 𝑦 ∈ V
159, 14brco 5292 . . . . . . . . 9 (⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦 ↔ ∃𝑧(⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦))
16 brapply.1 . . . . . . . . . . . . 13 𝐴 ∈ V
17 brapply.2 . . . . . . . . . . . . 13 𝐵 ∈ V
18 vex 3203 . . . . . . . . . . . . 13 𝑧 ∈ V
1916, 17, 18brpprod3a 31993 . . . . . . . . . . . 12 (⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧 ↔ ∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏))
20 3anrot 1043 . . . . . . . . . . . . . 14 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ (𝐴 I 𝑎𝐵Singleton𝑏𝑧 = ⟨𝑎, 𝑏⟩))
21 vex 3203 . . . . . . . . . . . . . . . . 17 𝑎 ∈ V
2221ideq 5274 . . . . . . . . . . . . . . . 16 (𝐴 I 𝑎𝐴 = 𝑎)
23 eqcom 2629 . . . . . . . . . . . . . . . 16 (𝐴 = 𝑎𝑎 = 𝐴)
2422, 23bitri 264 . . . . . . . . . . . . . . 15 (𝐴 I 𝑎𝑎 = 𝐴)
25 vex 3203 . . . . . . . . . . . . . . . 16 𝑏 ∈ V
2617, 25brsingle 32024 . . . . . . . . . . . . . . 15 (𝐵Singleton𝑏𝑏 = {𝐵})
27 biid 251 . . . . . . . . . . . . . . 15 (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝑎, 𝑏⟩)
2824, 26, 273anbi123i 1251 . . . . . . . . . . . . . 14 ((𝐴 I 𝑎𝐵Singleton𝑏𝑧 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
2920, 28bitri 264 . . . . . . . . . . . . 13 ((𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ (𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
30292exbii 1775 . . . . . . . . . . . 12 (∃𝑎𝑏(𝑧 = ⟨𝑎, 𝑏⟩ ∧ 𝐴 I 𝑎𝐵Singleton𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩))
31 snex 4908 . . . . . . . . . . . . 13 {𝐵} ∈ V
32 opeq1 4402 . . . . . . . . . . . . . 14 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
3332eqeq2d 2632 . . . . . . . . . . . . 13 (𝑎 = 𝐴 → (𝑧 = ⟨𝑎, 𝑏⟩ ↔ 𝑧 = ⟨𝐴, 𝑏⟩))
34 opeq2 4403 . . . . . . . . . . . . . 14 (𝑏 = {𝐵} → ⟨𝐴, 𝑏⟩ = ⟨𝐴, {𝐵}⟩)
3534eqeq2d 2632 . . . . . . . . . . . . 13 (𝑏 = {𝐵} → (𝑧 = ⟨𝐴, 𝑏⟩ ↔ 𝑧 = ⟨𝐴, {𝐵}⟩))
3616, 31, 33, 35ceqsex2v 3245 . . . . . . . . . . . 12 (∃𝑎𝑏(𝑎 = 𝐴𝑏 = {𝐵} ∧ 𝑧 = ⟨𝑎, 𝑏⟩) ↔ 𝑧 = ⟨𝐴, {𝐵}⟩)
3719, 30, 363bitri 286 . . . . . . . . . . 11 (⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧 = ⟨𝐴, {𝐵}⟩)
3837anbi1i 731 . . . . . . . . . 10 ((⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦) ↔ (𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
3938exbii 1774 . . . . . . . . 9 (∃𝑧(⟨𝐴, 𝐵⟩pprod( I , Singleton)𝑧𝑧(Singleton ∘ Img)𝑦) ↔ ∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦))
40 opex 4932 . . . . . . . . . . 11 𝐴, {𝐵}⟩ ∈ V
41 breq1 4656 . . . . . . . . . . 11 (𝑧 = ⟨𝐴, {𝐵}⟩ → (𝑧(Singleton ∘ Img)𝑦 ↔ ⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦))
4240, 41ceqsexv 3242 . . . . . . . . . 10 (∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ ⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦)
4340, 14brco 5292 . . . . . . . . . 10 (⟨𝐴, {𝐵}⟩(Singleton ∘ Img)𝑦 ↔ ∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦))
4416, 31, 12brimg 32044 . . . . . . . . . . . . 13 (⟨𝐴, {𝐵}⟩Img𝑥𝑥 = (𝐴 “ {𝐵}))
4512, 14brsingle 32024 . . . . . . . . . . . . 13 (𝑥Singleton𝑦𝑦 = {𝑥})
4644, 45anbi12i 733 . . . . . . . . . . . 12 ((⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ (𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}))
4746exbii 1774 . . . . . . . . . . 11 (∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ ∃𝑥(𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}))
48 imaexg 7103 . . . . . . . . . . . . 13 (𝐴 ∈ V → (𝐴 “ {𝐵}) ∈ V)
4916, 48ax-mp 5 . . . . . . . . . . . 12 (𝐴 “ {𝐵}) ∈ V
50 sneq 4187 . . . . . . . . . . . . 13 (𝑥 = (𝐴 “ {𝐵}) → {𝑥} = {(𝐴 “ {𝐵})})
5150eqeq2d 2632 . . . . . . . . . . . 12 (𝑥 = (𝐴 “ {𝐵}) → (𝑦 = {𝑥} ↔ 𝑦 = {(𝐴 “ {𝐵})}))
5249, 51ceqsexv 3242 . . . . . . . . . . 11 (∃𝑥(𝑥 = (𝐴 “ {𝐵}) ∧ 𝑦 = {𝑥}) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5347, 52bitri 264 . . . . . . . . . 10 (∃𝑥(⟨𝐴, {𝐵}⟩Img𝑥𝑥Singleton𝑦) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5442, 43, 533bitri 286 . . . . . . . . 9 (∃𝑧(𝑧 = ⟨𝐴, {𝐵}⟩ ∧ 𝑧(Singleton ∘ Img)𝑦) ↔ 𝑦 = {(𝐴 “ {𝐵})})
5515, 39, 543bitri 286 . . . . . . . 8 (⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦 = {(𝐴 “ {𝐵})})
56 eqid 2622 . . . . . . . . 9 ((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) = ((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))
57 brxp 5147 . . . . . . . . . 10 (𝑦(V × V)𝑥 ↔ (𝑦 ∈ V ∧ 𝑥 ∈ V))
5814, 12, 57mpbir2an 955 . . . . . . . . 9 𝑦(V × V)𝑥
59 epel 5032 . . . . . . . . . . 11 (𝑧 E 𝑦𝑧𝑦)
6059anbi1i 731 . . . . . . . . . 10 ((𝑧 E 𝑦𝑧 Singletons ) ↔ (𝑧𝑦𝑧 Singletons ))
6114brres 5402 . . . . . . . . . 10 (𝑧( E ↾ Singletons )𝑦 ↔ (𝑧 E 𝑦𝑧 Singletons ))
62 elin 3796 . . . . . . . . . 10 (𝑧 ∈ (𝑦 Singletons ) ↔ (𝑧𝑦𝑧 Singletons ))
6360, 61, 623bitr4ri 293 . . . . . . . . 9 (𝑧 ∈ (𝑦 Singletons ) ↔ 𝑧( E ↾ Singletons )𝑦)
6414, 12, 56, 58, 63brtxpsd3 32003 . . . . . . . 8 (𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥𝑥 = (𝑦 Singletons ))
6555, 64anbi12i 733 . . . . . . 7 ((⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥) ↔ (𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )))
6665exbii 1774 . . . . . 6 (∃𝑦(⟨𝐴, 𝐵⟩((Singleton ∘ Img) ∘ pprod( I , Singleton))𝑦𝑦((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V)))𝑥) ↔ ∃𝑦(𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )))
67 ineq1 3807 . . . . . . . 8 (𝑦 = {(𝐴 “ {𝐵})} → (𝑦 Singletons ) = ({(𝐴 “ {𝐵})} ∩ Singletons ))
6867eqeq2d 2632 . . . . . . 7 (𝑦 = {(𝐴 “ {𝐵})} → (𝑥 = (𝑦 Singletons ) ↔ 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons )))
691, 68ceqsexv 3242 . . . . . 6 (∃𝑦(𝑦 = {(𝐴 “ {𝐵})} ∧ 𝑥 = (𝑦 Singletons )) ↔ 𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7013, 66, 693bitri 286 . . . . 5 (⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
7112, 10brco 5292 . . . . . 6 (𝑥( Bigcup Bigcup )𝐶 ↔ ∃𝑦(𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶))
7214brbigcup 32005 . . . . . . . . 9 (𝑥 Bigcup 𝑦 𝑥 = 𝑦)
73 eqcom 2629 . . . . . . . . 9 ( 𝑥 = 𝑦𝑦 = 𝑥)
7472, 73bitri 264 . . . . . . . 8 (𝑥 Bigcup 𝑦𝑦 = 𝑥)
7510brbigcup 32005 . . . . . . . . 9 (𝑦 Bigcup 𝐶 𝑦 = 𝐶)
76 eqcom 2629 . . . . . . . . 9 ( 𝑦 = 𝐶𝐶 = 𝑦)
7775, 76bitri 264 . . . . . . . 8 (𝑦 Bigcup 𝐶𝐶 = 𝑦)
7874, 77anbi12i 733 . . . . . . 7 ((𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶) ↔ (𝑦 = 𝑥𝐶 = 𝑦))
7978exbii 1774 . . . . . 6 (∃𝑦(𝑥 Bigcup 𝑦𝑦 Bigcup 𝐶) ↔ ∃𝑦(𝑦 = 𝑥𝐶 = 𝑦))
80 vuniex 6954 . . . . . . 7 𝑥 ∈ V
81 unieq 4444 . . . . . . . 8 (𝑦 = 𝑥 𝑦 = 𝑥)
8281eqeq2d 2632 . . . . . . 7 (𝑦 = 𝑥 → (𝐶 = 𝑦𝐶 = 𝑥))
8380, 82ceqsexv 3242 . . . . . 6 (∃𝑦(𝑦 = 𝑥𝐶 = 𝑦) ↔ 𝐶 = 𝑥)
8471, 79, 833bitri 286 . . . . 5 (𝑥( Bigcup Bigcup )𝐶𝐶 = 𝑥)
8570, 84anbi12i 733 . . . 4 ((⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶) ↔ (𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
8685exbii 1774 . . 3 (∃𝑥(⟨𝐴, 𝐵⟩(((V × V) ∖ ran ((V ⊗ E ) △ (( E ↾ Singletons ) ⊗ V))) ∘ ((Singleton ∘ Img) ∘ pprod( I , Singleton)))𝑥𝑥( Bigcup Bigcup )𝐶) ↔ ∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
878, 11, 863bitri 286 . 2 (⟨𝐴, 𝐵⟩Apply𝐶 ↔ ∃𝑥(𝑥 = ({(𝐴 “ {𝐵})} ∩ Singletons ) ∧ 𝐶 = 𝑥))
88 dffv5 32031 . . 3 (𝐴𝐵) = ({(𝐴 “ {𝐵})} ∩ Singletons )
8988eqeq2i 2634 . 2 (𝐶 = (𝐴𝐵) ↔ 𝐶 = ({(𝐴 “ {𝐵})} ∩ Singletons ))
906, 87, 893bitr4i 292 1 (⟨𝐴, 𝐵⟩Apply𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wex 1704  wcel 1990  Vcvv 3200  cdif 3571  cin 3573  csymdif 3843  {csn 4177  cop 4183   cuni 4436   class class class wbr 4653   I cid 5023   E cep 5028   × cxp 5112  ran crn 5115  cres 5116  cima 5117  ccom 5118  cfv 5888  ctxp 31937  pprodcpprod 31938   Bigcup cbigcup 31941  Singletoncsingle 31945   Singletons csingles 31946  Imgcimg 31949  Applycapply 31952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-symdif 3844  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-eprel 5029  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fo 5894  df-fv 5896  df-1st 7168  df-2nd 7169  df-txp 31961  df-pprod 31962  df-bigcup 31965  df-singleton 31969  df-singles 31970  df-image 31971  df-cart 31972  df-img 31973  df-apply 31980
This theorem is referenced by:  dfrecs2  32057  dfrdg4  32058
  Copyright terms: Public domain W3C validator