MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcel1v Structured version   Visualization version   GIF version

Theorem sbcel1v 3495
Description: Class substitution into a membership relation. (Contributed by NM, 17-Aug-2018.)
Assertion
Ref Expression
sbcel1v ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Distinct variable group:   𝑥,𝐵
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem sbcel1v
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 sbcex 3445 . 2 ([𝐴 / 𝑥]𝑥𝐵𝐴 ∈ V)
2 elex 3212 . 2 (𝐴𝐵𝐴 ∈ V)
3 dfsbcq2 3438 . . 3 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝑥𝐵[𝐴 / 𝑥]𝑥𝐵))
4 eleq1 2689 . . 3 (𝑦 = 𝐴 → (𝑦𝐵𝐴𝐵))
5 clelsb3 2729 . . 3 ([𝑦 / 𝑥]𝑥𝐵𝑦𝐵)
63, 4, 5vtoclbg 3267 . 2 (𝐴 ∈ V → ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵))
71, 2, 6pm5.21nii 368 1 ([𝐴 / 𝑥]𝑥𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wb 196  [wsb 1880  wcel 1990  Vcvv 3200  [wsbc 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202  df-sbc 3436
This theorem is referenced by:  tfinds2  7063  filuni  21689  gropeld  25925  grstructeld  25926  f1od2  29499  esum2dlem  30154  bnj110  30928  f1omptsnlem  33183  relowlpssretop  33212  rdgeqoa  33218  cotrclrcl  38034  frege70  38227  frege72  38229  frege91  38248  sbcoreleleq  38745  onfrALTlem4  38758
  Copyright terms: Public domain W3C validator