Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  measiuns Structured version   Visualization version   GIF version

Theorem measiuns 30280
Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun 30281 and meascnbl 30282. (Contributed by Thierry Arnoux, 22-Jan-2017.) (Proof shortened by Thierry Arnoux, 7-Feb-2017.)
Hypotheses
Ref Expression
measiuns.0 𝑛𝐵
measiuns.1 (𝑛 = 𝑘𝐴 = 𝐵)
measiuns.2 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
measiuns.3 (𝜑𝑀 ∈ (measures‘𝑆))
measiuns.4 ((𝜑𝑛𝑁) → 𝐴𝑆)
Assertion
Ref Expression
measiuns (𝜑 → (𝑀 𝑛𝑁 𝐴) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑛,𝐼   𝑛,𝑀   𝑘,𝑁,𝑛   𝑆,𝑘,𝑛   𝜑,𝑘,𝑛
Allowed substitution hints:   𝐴(𝑛)   𝐵(𝑘,𝑛)   𝑀(𝑘)

Proof of Theorem measiuns
StepHypRef Expression
1 measiuns.0 . . . 4 𝑛𝐵
2 measiuns.1 . . . 4 (𝑛 = 𝑘𝐴 = 𝐵)
3 measiuns.2 . . . 4 (𝜑 → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
41, 2, 3iundisjcnt 29557 . . 3 (𝜑 𝑛𝑁 𝐴 = 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
54fveq2d 6195 . 2 (𝜑 → (𝑀 𝑛𝑁 𝐴) = (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
6 measiuns.3 . . 3 (𝜑𝑀 ∈ (measures‘𝑆))
7 measbase 30260 . . . . . . 7 (𝑀 ∈ (measures‘𝑆) → 𝑆 ran sigAlgebra)
86, 7syl 17 . . . . . 6 (𝜑𝑆 ran sigAlgebra)
98adantr 481 . . . . 5 ((𝜑𝑛𝑁) → 𝑆 ran sigAlgebra)
10 measiuns.4 . . . . 5 ((𝜑𝑛𝑁) → 𝐴𝑆)
11 simpll 790 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝜑)
12 fzossnn 12516 . . . . . . . . . . 11 (1..^𝑛) ⊆ ℕ
13 simpr 477 . . . . . . . . . . 11 (((𝜑𝑛𝑁) ∧ 𝑁 = ℕ) → 𝑁 = ℕ)
1412, 13syl5sseqr 3654 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ 𝑁 = ℕ) → (1..^𝑛) ⊆ 𝑁)
15 simplr 792 . . . . . . . . . . . . 13 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛𝑁)
16 simpr 477 . . . . . . . . . . . . 13 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑁 = (1..^𝐼))
1715, 16eleqtrd 2703 . . . . . . . . . . . 12 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → 𝑛 ∈ (1..^𝐼))
18 elfzouz2 12484 . . . . . . . . . . . 12 (𝑛 ∈ (1..^𝐼) → 𝐼 ∈ (ℤ𝑛))
19 fzoss2 12496 . . . . . . . . . . . 12 (𝐼 ∈ (ℤ𝑛) → (1..^𝑛) ⊆ (1..^𝐼))
2017, 18, 193syl 18 . . . . . . . . . . 11 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ (1..^𝐼))
2120, 16sseqtr4d 3642 . . . . . . . . . 10 (((𝜑𝑛𝑁) ∧ 𝑁 = (1..^𝐼)) → (1..^𝑛) ⊆ 𝑁)
223adantr 481 . . . . . . . . . 10 ((𝜑𝑛𝑁) → (𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)))
2314, 21, 22mpjaodan 827 . . . . . . . . 9 ((𝜑𝑛𝑁) → (1..^𝑛) ⊆ 𝑁)
2423sselda 3603 . . . . . . . 8 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝑘𝑁)
2510sbimi 1886 . . . . . . . . 9 ([𝑘 / 𝑛](𝜑𝑛𝑁) → [𝑘 / 𝑛]𝐴𝑆)
26 sban 2399 . . . . . . . . . 10 ([𝑘 / 𝑛](𝜑𝑛𝑁) ↔ ([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛𝑁))
27 nfv 1843 . . . . . . . . . . . 12 𝑛𝜑
2827sbf 2380 . . . . . . . . . . 11 ([𝑘 / 𝑛]𝜑𝜑)
29 clelsb3 2729 . . . . . . . . . . 11 ([𝑘 / 𝑛]𝑛𝑁𝑘𝑁)
3028, 29anbi12i 733 . . . . . . . . . 10 (([𝑘 / 𝑛]𝜑 ∧ [𝑘 / 𝑛]𝑛𝑁) ↔ (𝜑𝑘𝑁))
3126, 30bitri 264 . . . . . . . . 9 ([𝑘 / 𝑛](𝜑𝑛𝑁) ↔ (𝜑𝑘𝑁))
32 sbsbc 3439 . . . . . . . . . 10 ([𝑘 / 𝑛]𝐴𝑆[𝑘 / 𝑛]𝐴𝑆)
33 vex 3203 . . . . . . . . . . 11 𝑘 ∈ V
34 sbcel1g 3987 . . . . . . . . . . 11 (𝑘 ∈ V → ([𝑘 / 𝑛]𝐴𝑆𝑘 / 𝑛𝐴𝑆))
3533, 34ax-mp 5 . . . . . . . . . 10 ([𝑘 / 𝑛]𝐴𝑆𝑘 / 𝑛𝐴𝑆)
36 nfcv 2764 . . . . . . . . . . . . 13 𝑘𝐴
3736, 1, 2cbvcsb 3538 . . . . . . . . . . . 12 𝑘 / 𝑛𝐴 = 𝑘 / 𝑘𝐵
38 csbid 3541 . . . . . . . . . . . 12 𝑘 / 𝑘𝐵 = 𝐵
3937, 38eqtri 2644 . . . . . . . . . . 11 𝑘 / 𝑛𝐴 = 𝐵
4039eleq1i 2692 . . . . . . . . . 10 (𝑘 / 𝑛𝐴𝑆𝐵𝑆)
4132, 35, 403bitri 286 . . . . . . . . 9 ([𝑘 / 𝑛]𝐴𝑆𝐵𝑆)
4225, 31, 413imtr3i 280 . . . . . . . 8 ((𝜑𝑘𝑁) → 𝐵𝑆)
4311, 24, 42syl2anc 693 . . . . . . 7 (((𝜑𝑛𝑁) ∧ 𝑘 ∈ (1..^𝑛)) → 𝐵𝑆)
4443ralrimiva 2966 . . . . . 6 ((𝜑𝑛𝑁) → ∀𝑘 ∈ (1..^𝑛)𝐵𝑆)
45 sigaclfu2 30184 . . . . . 6 ((𝑆 ran sigAlgebra ∧ ∀𝑘 ∈ (1..^𝑛)𝐵𝑆) → 𝑘 ∈ (1..^𝑛)𝐵𝑆)
469, 44, 45syl2anc 693 . . . . 5 ((𝜑𝑛𝑁) → 𝑘 ∈ (1..^𝑛)𝐵𝑆)
47 difelsiga 30196 . . . . 5 ((𝑆 ran sigAlgebra ∧ 𝐴𝑆 𝑘 ∈ (1..^𝑛)𝐵𝑆) → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
489, 10, 46, 47syl3anc 1326 . . . 4 ((𝜑𝑛𝑁) → (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
4948ralrimiva 2966 . . 3 (𝜑 → ∀𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆)
50 eqimss 3657 . . . . . 6 (𝑁 = ℕ → 𝑁 ⊆ ℕ)
51 fzossnn 12516 . . . . . . 7 (1..^𝐼) ⊆ ℕ
52 sseq1 3626 . . . . . . 7 (𝑁 = (1..^𝐼) → (𝑁 ⊆ ℕ ↔ (1..^𝐼) ⊆ ℕ))
5351, 52mpbiri 248 . . . . . 6 (𝑁 = (1..^𝐼) → 𝑁 ⊆ ℕ)
5450, 53jaoi 394 . . . . 5 ((𝑁 = ℕ ∨ 𝑁 = (1..^𝐼)) → 𝑁 ⊆ ℕ)
553, 54syl 17 . . . 4 (𝜑𝑁 ⊆ ℕ)
56 nnct 12780 . . . 4 ℕ ≼ ω
57 ssct 8041 . . . 4 ((𝑁 ⊆ ℕ ∧ ℕ ≼ ω) → 𝑁 ≼ ω)
5855, 56, 57sylancl 694 . . 3 (𝜑𝑁 ≼ ω)
591, 2, 3iundisj2cnt 29558 . . 3 (𝜑Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))
60 measvuni 30277 . . 3 ((𝑀 ∈ (measures‘𝑆) ∧ ∀𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵) ∈ 𝑆 ∧ (𝑁 ≼ ω ∧ Disj 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵))) → (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
616, 49, 58, 59, 60syl112anc 1330 . 2 (𝜑 → (𝑀 𝑛𝑁 (𝐴 𝑘 ∈ (1..^𝑛)𝐵)) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
625, 61eqtrd 2656 1 (𝜑 → (𝑀 𝑛𝑁 𝐴) = Σ*𝑛𝑁(𝑀‘(𝐴 𝑘 ∈ (1..^𝑛)𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  [wsb 1880  wcel 1990  wnfc 2751  wral 2912  Vcvv 3200  [wsbc 3435  csb 3533  cdif 3571  wss 3574   cuni 4436   ciun 4520  Disj wdisj 4620   class class class wbr 4653  ran crn 5115  cfv 5888  (class class class)co 6650  ωcom 7065  cdom 7953  1c1 9937  cn 11020  cuz 11687  ..^cfzo 12465  Σ*cesum 30089  sigAlgebracsiga 30170  measurescmeas 30258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-ac2 9285  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-disj 4621  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fsupp 8276  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-acn 8768  df-ac 8939  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ioc 12180  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-mod 12669  df-seq 12802  df-exp 12861  df-fac 13061  df-bc 13090  df-hash 13118  df-shft 13807  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-limsup 14202  df-clim 14219  df-rlim 14220  df-sum 14417  df-ef 14798  df-sin 14800  df-cos 14801  df-pi 14803  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-sca 15957  df-vsca 15958  df-ip 15959  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-rest 16083  df-topn 16084  df-0g 16102  df-gsum 16103  df-topgen 16104  df-pt 16105  df-prds 16108  df-ordt 16161  df-xrs 16162  df-qtop 16167  df-imas 16168  df-xps 16170  df-mre 16246  df-mrc 16247  df-acs 16249  df-ps 17200  df-tsr 17201  df-plusf 17241  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-submnd 17336  df-grp 17425  df-minusg 17426  df-sbg 17427  df-mulg 17541  df-subg 17591  df-cntz 17750  df-cmn 18195  df-abl 18196  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-subrg 18778  df-abv 18817  df-lmod 18865  df-scaf 18866  df-sra 19172  df-rgmod 19173  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-fbas 19743  df-fg 19744  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-ntr 20824  df-cls 20825  df-nei 20902  df-lp 20940  df-perf 20941  df-cn 21031  df-cnp 21032  df-haus 21119  df-tx 21365  df-hmeo 21558  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744  df-tmd 21876  df-tgp 21877  df-tsms 21930  df-trg 21963  df-xms 22125  df-ms 22126  df-tms 22127  df-nm 22387  df-ngp 22388  df-nrg 22390  df-nlm 22391  df-ii 22680  df-cncf 22681  df-limc 23630  df-dv 23631  df-log 24303  df-esum 30090  df-siga 30171  df-meas 30259
This theorem is referenced by:  measiun  30281  meascnbl  30282
  Copyright terms: Public domain W3C validator