MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim Structured version   Visualization version   GIF version

Theorem clim 14225
Description: Express the predicate: The limit of complex number sequence 𝐹 is 𝐴, or 𝐹 converges to 𝐴. This means that for any real 𝑥, no matter how small, there always exists an integer 𝑗 such that the absolute difference of any later complex number in the sequence and the limit is less than 𝑥. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
clim.1 (𝜑𝐹𝑉)
clim.3 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)
Assertion
Ref Expression
clim (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐴   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hints:   𝐵(𝑥,𝑗,𝑘)   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem clim
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 14223 . . . . 5 Rel ⇝
21brrelex2i 5159 . . . 4 (𝐹𝐴𝐴 ∈ V)
32a1i 11 . . 3 (𝜑 → (𝐹𝐴𝐴 ∈ V))
4 elex 3212 . . . . 5 (𝐴 ∈ ℂ → 𝐴 ∈ V)
54adantr 481 . . . 4 ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V)
65a1i 11 . . 3 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) → 𝐴 ∈ V))
7 clim.1 . . . 4 (𝜑𝐹𝑉)
8 simpr 477 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐴) → 𝑦 = 𝐴)
98eleq1d 2686 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐴) → (𝑦 ∈ ℂ ↔ 𝐴 ∈ ℂ))
10 fveq1 6190 . . . . . . . . . . . . 13 (𝑓 = 𝐹 → (𝑓𝑘) = (𝐹𝑘))
1110adantr 481 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑦 = 𝐴) → (𝑓𝑘) = (𝐹𝑘))
1211eleq1d 2686 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑓𝑘) ∈ ℂ ↔ (𝐹𝑘) ∈ ℂ))
13 oveq12 6659 . . . . . . . . . . . . . 14 (((𝑓𝑘) = (𝐹𝑘) ∧ 𝑦 = 𝐴) → ((𝑓𝑘) − 𝑦) = ((𝐹𝑘) − 𝐴))
1410, 13sylan 488 . . . . . . . . . . . . 13 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑓𝑘) − 𝑦) = ((𝐹𝑘) − 𝐴))
1514fveq2d 6195 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑦 = 𝐴) → (abs‘((𝑓𝑘) − 𝑦)) = (abs‘((𝐹𝑘) − 𝐴)))
1615breq1d 4663 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑦 = 𝐴) → ((abs‘((𝑓𝑘) − 𝑦)) < 𝑥 ↔ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))
1712, 16anbi12d 747 . . . . . . . . . 10 ((𝑓 = 𝐹𝑦 = 𝐴) → (((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
1817ralbidv 2986 . . . . . . . . 9 ((𝑓 = 𝐹𝑦 = 𝐴) → (∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
1918rexbidv 3052 . . . . . . . 8 ((𝑓 = 𝐹𝑦 = 𝐴) → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
2019ralbidv 2986 . . . . . . 7 ((𝑓 = 𝐹𝑦 = 𝐴) → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))
219, 20anbi12d 747 . . . . . 6 ((𝑓 = 𝐹𝑦 = 𝐴) → ((𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
22 df-clim 14219 . . . . . 6 ⇝ = {⟨𝑓, 𝑦⟩ ∣ (𝑦 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝑓𝑘) ∈ ℂ ∧ (abs‘((𝑓𝑘) − 𝑦)) < 𝑥))}
2321, 22brabga 4989 . . . . 5 ((𝐹𝑉𝐴 ∈ V) → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
2423ex 450 . . . 4 (𝐹𝑉 → (𝐴 ∈ V → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))))
257, 24syl 17 . . 3 (𝜑 → (𝐴 ∈ V → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)))))
263, 6, 25pm5.21ndd 369 . 2 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥))))
27 eluzelz 11697 . . . . . . 7 (𝑘 ∈ (ℤ𝑗) → 𝑘 ∈ ℤ)
28 clim.3 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (𝐹𝑘) = 𝐵)
2928eleq1d 2686 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((𝐹𝑘) ∈ ℂ ↔ 𝐵 ∈ ℂ))
3028oveq1d 6665 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℤ) → ((𝐹𝑘) − 𝐴) = (𝐵𝐴))
3130fveq2d 6195 . . . . . . . . 9 ((𝜑𝑘 ∈ ℤ) → (abs‘((𝐹𝑘) − 𝐴)) = (abs‘(𝐵𝐴)))
3231breq1d 4663 . . . . . . . 8 ((𝜑𝑘 ∈ ℤ) → ((abs‘((𝐹𝑘) − 𝐴)) < 𝑥 ↔ (abs‘(𝐵𝐴)) < 𝑥))
3329, 32anbi12d 747 . . . . . . 7 ((𝜑𝑘 ∈ ℤ) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
3427, 33sylan2 491 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝑗)) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ (𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
3534ralbidva 2985 . . . . 5 (𝜑 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
3635rexbidv 3052 . . . 4 (𝜑 → (∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∃𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
3736ralbidv 2986 . . 3 (𝜑 → (∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥)))
3837anbi2d 740 . 2 (𝜑 → ((𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − 𝐴)) < 𝑥)) ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
3926, 38bitrd 268 1 (𝜑 → (𝐹𝐴 ↔ (𝐴 ∈ ℂ ∧ ∀𝑥 ∈ ℝ+𝑗 ∈ ℤ ∀𝑘 ∈ (ℤ𝑗)(𝐵 ∈ ℂ ∧ (abs‘(𝐵𝐴)) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  wral 2912  wrex 2913  Vcvv 3200   class class class wbr 4653  cfv 5888  (class class class)co 6650  cc 9934   < clt 10074  cmin 10266  cz 11377  cuz 11687  +crp 11832  abscabs 13974  cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-neg 10269  df-z 11378  df-uz 11688  df-clim 14219
This theorem is referenced by:  climcl  14230  clim2  14235  climshftlem  14305  climsuse  39840  0cnv  39974  climuzlem  39975  climisp  39978  climrescn  39980  climxrrelem  39981  climxrre  39982  ioodvbdlimc1lem2  40147  ioodvbdlimc2lem  40149
  Copyright terms: Public domain W3C validator