MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clim Structured version   Visualization version   Unicode version

Theorem clim 14225
Description: Express the predicate: The limit of complex number sequence  F is  A, or  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer 
j such that the absolute difference of any later complex number in the sequence and the limit is less than  x. (Contributed by NM, 28-Aug-2005.) (Revised by Mario Carneiro, 28-Apr-2015.)
Hypotheses
Ref Expression
clim.1  |-  ( ph  ->  F  e.  V )
clim.3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  B )
Assertion
Ref Expression
clim  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Distinct variable groups:    j, k, x, A    j, F, k, x    ph, j, k, x
Allowed substitution hints:    B( x, j, k)    V( x, j, k)

Proof of Theorem clim
Dummy variables  f 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 climrel 14223 . . . . 5  |-  Rel  ~~>
21brrelex2i 5159 . . . 4  |-  ( F  ~~>  A  ->  A  e.  _V )
32a1i 11 . . 3  |-  ( ph  ->  ( F  ~~>  A  ->  A  e.  _V )
)
4 elex 3212 . . . . 5  |-  ( A  e.  CC  ->  A  e.  _V )
54adantr 481 . . . 4  |-  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  ->  A  e.  _V )
65a1i 11 . . 3  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  ->  A  e.  _V ) )
7 clim.1 . . . 4  |-  ( ph  ->  F  e.  V )
8 simpr 477 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  A )  ->  y  =  A )
98eleq1d 2686 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  A )  ->  ( y  e.  CC  <->  A  e.  CC ) )
10 fveq1 6190 . . . . . . . . . . . . 13  |-  ( f  =  F  ->  (
f `  k )  =  ( F `  k ) )
1110adantr 481 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  A )  ->  ( f `  k
)  =  ( F `
 k ) )
1211eleq1d 2686 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( f `  k )  e.  CC  <->  ( F `  k )  e.  CC ) )
13 oveq12 6659 . . . . . . . . . . . . . 14  |-  ( ( ( f `  k
)  =  ( F `
 k )  /\  y  =  A )  ->  ( ( f `  k )  -  y
)  =  ( ( F `  k )  -  A ) )
1410, 13sylan 488 . . . . . . . . . . . . 13  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( f `  k )  -  y
)  =  ( ( F `  k )  -  A ) )
1514fveq2d 6195 . . . . . . . . . . . 12  |-  ( ( f  =  F  /\  y  =  A )  ->  ( abs `  (
( f `  k
)  -  y ) )  =  ( abs `  ( ( F `  k )  -  A
) ) )
1615breq1d 4663 . . . . . . . . . . 11  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( abs `  (
( f `  k
)  -  y ) )  <  x  <->  ( abs `  ( ( F `  k )  -  A
) )  <  x
) )
1712, 16anbi12d 747 . . . . . . . . . 10  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( ( f `
 k )  e.  CC  /\  ( abs `  ( ( f `  k )  -  y
) )  <  x
)  <->  ( ( F `
 k )  e.  CC  /\  ( abs `  ( ( F `  k )  -  A
) )  <  x
) ) )
1817ralbidv 2986 . . . . . . . . 9  |-  ( ( f  =  F  /\  y  =  A )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x ) ) )
1918rexbidv 3052 . . . . . . . 8  |-  ( ( f  =  F  /\  y  =  A )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x ) ) )
2019ralbidv 2986 . . . . . . 7  |-  ( ( f  =  F  /\  y  =  A )  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( f `  k )  e.  CC  /\  ( abs `  ( ( f `
 k )  -  y ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) )
219, 20anbi12d 747 . . . . . 6  |-  ( ( f  =  F  /\  y  =  A )  ->  ( ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
22 df-clim 14219 . . . . . 6  |-  ~~>  =  { <. f ,  y >.  |  ( y  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( f `  k )  e.  CC  /\  ( abs `  (
( f `  k
)  -  y ) )  <  x ) ) }
2321, 22brabga 4989 . . . . 5  |-  ( ( F  e.  V  /\  A  e.  _V )  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
2423ex 450 . . . 4  |-  ( F  e.  V  ->  ( A  e.  _V  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) ) )
257, 24syl 17 . . 3  |-  ( ph  ->  ( A  e.  _V  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) ) )
263, 6, 25pm5.21ndd 369 . 2  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) ) ) )
27 eluzelz 11697 . . . . . . 7  |-  ( k  e.  ( ZZ>= `  j
)  ->  k  e.  ZZ )
28 clim.3 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( F `
 k )  =  B )
2928eleq1d 2686 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( F `  k )  e.  CC  <->  B  e.  CC ) )
3028oveq1d 6665 . . . . . . . . . 10  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( F `  k )  -  A )  =  ( B  -  A
) )
3130fveq2d 6195 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( abs `  ( ( F `  k )  -  A
) )  =  ( abs `  ( B  -  A ) ) )
3231breq1d 4663 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( abs `  ( ( F `  k )  -  A ) )  <  x  <->  ( abs `  ( B  -  A
) )  <  x
) )
3329, 32anbi12d 747 . . . . . . 7  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
3427, 33sylan2 491 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  A ) )  <  x )  <->  ( B  e.  CC  /\  ( abs `  ( B  -  A
) )  <  x
) ) )
3534ralbidva 2985 . . . . 5  |-  ( ph  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  A. k  e.  ( ZZ>=
`  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  <  x ) ) )
3635rexbidv 3052 . . . 4  |-  ( ph  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( B  e.  CC  /\  ( abs `  ( B  -  A ) )  < 
x ) ) )
3736ralbidv 2986 . . 3  |-  ( ph  ->  ( A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  A ) )  < 
x )  <->  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) )
3837anbi2d 740 . 2  |-  ( ph  ->  ( ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  A ) )  <  x ) )  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
3926, 38bitrd 268 1  |-  ( ph  ->  ( F  ~~>  A  <->  ( A  e.  CC  /\  A. x  e.  RR+  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( B  e.  CC  /\  ( abs `  ( B  -  A )
)  <  x )
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   _Vcvv 3200   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   CCcc 9934    < clt 10074    - cmin 10266   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   abscabs 13974    ~~> cli 14215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-cnex 9992  ax-resscn 9993
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-ov 6653  df-neg 10269  df-z 11378  df-uz 11688  df-clim 14219
This theorem is referenced by:  climcl  14230  clim2  14235  climshftlem  14305  climsuse  39840  0cnv  39974  climuzlem  39975  climisp  39978  climrescn  39980  climxrrelem  39981  climxrre  39982  ioodvbdlimc1lem2  40147  ioodvbdlimc2lem  40149
  Copyright terms: Public domain W3C validator