![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > clsk1indlem0 | Structured version Visualization version GIF version |
Description: The ansatz closure function (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) has the K0 property of preserving the nullary union. (Contributed by RP, 6-Jul-2021.) |
Ref | Expression |
---|---|
clsk1indlem.k | ⊢ 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) |
Ref | Expression |
---|---|
clsk1indlem0 | ⊢ (𝐾‘∅) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0elpw 4834 | . 2 ⊢ ∅ ∈ 𝒫 3𝑜 | |
2 | eqeq1 2626 | . . . . 5 ⊢ (𝑟 = ∅ → (𝑟 = {∅} ↔ ∅ = {∅})) | |
3 | id 22 | . . . . 5 ⊢ (𝑟 = ∅ → 𝑟 = ∅) | |
4 | 2, 3 | ifbieq2d 4111 | . . . 4 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(∅ = {∅}, {∅, 1𝑜}, ∅)) |
5 | 0nep0 4836 | . . . . . . 7 ⊢ ∅ ≠ {∅} | |
6 | 5 | a1i 11 | . . . . . 6 ⊢ (𝑟 = ∅ → ∅ ≠ {∅}) |
7 | 6 | neneqd 2799 | . . . . 5 ⊢ (𝑟 = ∅ → ¬ ∅ = {∅}) |
8 | 7 | iffalsed 4097 | . . . 4 ⊢ (𝑟 = ∅ → if(∅ = {∅}, {∅, 1𝑜}, ∅) = ∅) |
9 | 4, 8 | eqtrd 2656 | . . 3 ⊢ (𝑟 = ∅ → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = ∅) |
10 | clsk1indlem.k | . . 3 ⊢ 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) | |
11 | 0ex 4790 | . . 3 ⊢ ∅ ∈ V | |
12 | 9, 10, 11 | fvmpt 6282 | . 2 ⊢ (∅ ∈ 𝒫 3𝑜 → (𝐾‘∅) = ∅) |
13 | 1, 12 | ax-mp 5 | 1 ⊢ (𝐾‘∅) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1483 ∈ wcel 1990 ≠ wne 2794 ∅c0 3915 ifcif 4086 𝒫 cpw 4158 {csn 4177 {cpr 4179 ↦ cmpt 4729 ‘cfv 5888 1𝑜c1o 7553 3𝑜c3o 7555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-iota 5851 df-fun 5890 df-fv 5896 |
This theorem is referenced by: clsk1independent 38344 |
Copyright terms: Public domain | W3C validator |