Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  clsk1indlem2 Structured version   Visualization version   GIF version

Theorem clsk1indlem2 38340
Description: The ansatz closure function (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟)) has the K2 property of expanding. (Contributed by RP, 6-Jul-2021.)
Hypothesis
Ref Expression
clsk1indlem.k 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
Assertion
Ref Expression
clsk1indlem2 𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝐾𝑠)
Distinct variable group:   𝑠,𝑟
Allowed substitution hints:   𝐾(𝑠,𝑟)

Proof of Theorem clsk1indlem2
StepHypRef Expression
1 id 22 . . . . . . . . . 10 (𝑠 = {∅} → 𝑠 = {∅})
2 snsspr1 4345 . . . . . . . . . 10 {∅} ⊆ {∅, 1𝑜}
31, 2syl6eqss 3655 . . . . . . . . 9 (𝑠 = {∅} → 𝑠 ⊆ {∅, 1𝑜})
43ancli 574 . . . . . . . 8 (𝑠 = {∅} → (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}))
54con3i 150 . . . . . . 7 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) → ¬ 𝑠 = {∅})
6 ssid 3624 . . . . . . 7 𝑠𝑠
75, 6jctir 561 . . . . . 6 (¬ (𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) → (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
87orri 391 . . . . 5 ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠))
98a1i 11 . . . 4 (𝑠 ∈ 𝒫 3𝑜 → ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
10 sseq2 3627 . . . . 5 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = {∅, 1𝑜} → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ 𝑠 ⊆ {∅, 1𝑜}))
11 sseq2 3627 . . . . 5 (if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) = 𝑠 → (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ 𝑠𝑠))
1210, 11elimif 4122 . . . 4 (𝑠 ⊆ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ↔ ((𝑠 = {∅} ∧ 𝑠 ⊆ {∅, 1𝑜}) ∨ (¬ 𝑠 = {∅} ∧ 𝑠𝑠)))
139, 12sylibr 224 . . 3 (𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
14 eqeq1 2626 . . . . 5 (𝑟 = 𝑠 → (𝑟 = {∅} ↔ 𝑠 = {∅}))
15 id 22 . . . . 5 (𝑟 = 𝑠𝑟 = 𝑠)
1614, 15ifbieq2d 4111 . . . 4 (𝑟 = 𝑠 → if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
17 clsk1indlem.k . . . 4 𝐾 = (𝑟 ∈ 𝒫 3𝑜 ↦ if(𝑟 = {∅}, {∅, 1𝑜}, 𝑟))
18 prex 4909 . . . . 5 {∅, 1𝑜} ∈ V
19 vex 3203 . . . . 5 𝑠 ∈ V
2018, 19ifex 4156 . . . 4 if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠) ∈ V
2116, 17, 20fvmpt 6282 . . 3 (𝑠 ∈ 𝒫 3𝑜 → (𝐾𝑠) = if(𝑠 = {∅}, {∅, 1𝑜}, 𝑠))
2213, 21sseqtr4d 3642 . 2 (𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝐾𝑠))
2322rgen 2922 1 𝑠 ∈ 𝒫 3𝑜𝑠 ⊆ (𝐾𝑠)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 383  wa 384   = wceq 1483  wcel 1990  wral 2912  wss 3574  c0 3915  ifcif 4086  𝒫 cpw 4158  {csn 4177  {cpr 4179  cmpt 4729  cfv 5888  1𝑜c1o 7553  3𝑜c3o 7555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896
This theorem is referenced by:  clsk1independent  38344
  Copyright terms: Public domain W3C validator