| Step | Hyp | Ref
| Expression |
| 1 | | eliun 4524 |
. . 3
⊢ (𝑦 ∈ ∪ 𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ ∃𝑥 ∈ 𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) |
| 2 | | fveq1 6190 |
. . . . . . 7
⊢ (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0)) |
| 3 | 2 | eqeq1d 2624 |
. . . . . 6
⊢ (𝑤 = 𝑦 → ((𝑤‘0) = 𝑥 ↔ (𝑦‘0) = 𝑥)) |
| 4 | 3 | elrab 3363 |
. . . . 5
⊢ (𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)) |
| 5 | 4 | rexbii 3041 |
. . . 4
⊢
(∃𝑥 ∈
𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)) |
| 6 | | simpl 473 |
. . . . . . 7
⊢ ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) |
| 7 | 6 | a1i 11 |
. . . . . 6
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
→ ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))) |
| 8 | 7 | rexlimdvw 3034 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
→ (∃𝑥 ∈
𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))) |
| 9 | | clwwlksnun.v |
. . . . . . . . 9
⊢ 𝑉 = (Vtx‘𝐺) |
| 10 | | eqid 2622 |
. . . . . . . . 9
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 11 | 9, 10 | clwwlknp 26887 |
. . . . . . . 8
⊢ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) |
| 12 | 11 | anim2i 593 |
. . . . . . 7
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)))) |
| 13 | 10, 9 | usgrpredgv 26089 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺 ∈ USGraph ∧ {( lastS
‘𝑦), (𝑦‘0)} ∈
(Edg‘𝐺)) → ((
lastS ‘𝑦) ∈
𝑉 ∧ (𝑦‘0) ∈ 𝑉)) |
| 14 | 13 | ex 450 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ USGraph → ({( lastS
‘𝑦), (𝑦‘0)} ∈
(Edg‘𝐺) → ((
lastS ‘𝑦) ∈
𝑉 ∧ (𝑦‘0) ∈ 𝑉))) |
| 15 | | simpr 477 |
. . . . . . . . . . . . . 14
⊢ ((( lastS
‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉) → (𝑦‘0) ∈ 𝑉) |
| 16 | 14, 15 | syl6 35 |
. . . . . . . . . . . . 13
⊢ (𝐺 ∈ USGraph → ({( lastS
‘𝑦), (𝑦‘0)} ∈
(Edg‘𝐺) → (𝑦‘0) ∈ 𝑉)) |
| 17 | 16 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
→ ({( lastS ‘𝑦),
(𝑦‘0)} ∈
(Edg‘𝐺) → (𝑦‘0) ∈ 𝑉)) |
| 18 | 17 | com12 32 |
. . . . . . . . . . 11
⊢ ({( lastS
‘𝑦), (𝑦‘0)} ∈
(Edg‘𝐺) →
((𝐺 ∈ USGraph ∧
𝑁 ∈
ℕ0) → (𝑦‘0) ∈ 𝑉)) |
| 19 | 18 | 3ad2ant3 1084 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦‘0) ∈ 𝑉)) |
| 20 | 19 | impcom 446 |
. . . . . . . . 9
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦‘0) ∈ 𝑉) |
| 21 | | simpr 477 |
. . . . . . . . . . . 12
⊢ ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → 𝑥 = (𝑦‘0)) |
| 22 | 21 | eqcomd 2628 |
. . . . . . . . . . 11
⊢ ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦‘0) = 𝑥) |
| 23 | 22 | biantrud 528 |
. . . . . . . . . 10
⊢ ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))) |
| 24 | 23 | bicomd 213 |
. . . . . . . . 9
⊢ ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺))) |
| 25 | 20, 24 | rspcedv 3313 |
. . . . . . . 8
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))) |
| 26 | 25 | adantld 483 |
. . . . . . 7
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦‘𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))) |
| 27 | 12, 26 | mpcom 38 |
. . . . . 6
⊢ (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)) |
| 28 | 27 | ex 450 |
. . . . 5
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
→ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥 ∈ 𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))) |
| 29 | 8, 28 | impbid 202 |
. . . 4
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
→ (∃𝑥 ∈
𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺))) |
| 30 | 5, 29 | syl5bb 272 |
. . 3
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
→ (∃𝑥 ∈
𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺))) |
| 31 | 1, 30 | syl5rbb 273 |
. 2
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
→ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑦 ∈ ∪
𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})) |
| 32 | 31 | eqrdv 2620 |
1
⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0)
→ (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) |