MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clwwlksnun Structured version   Visualization version   GIF version

Theorem clwwlksnun 26974
Description: The set of closed walks of fixed length in a simple graph is the union of the closed walks of the fixed length starting at each of the vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 28-May-2021.)
Hypothesis
Ref Expression
clwwlksnun.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
clwwlksnun ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})
Distinct variable groups:   𝑥,𝐺   𝑥,𝑁   𝑥,𝑉   𝑥,𝑤,𝐺   𝑤,𝑁
Allowed substitution hint:   𝑉(𝑤)

Proof of Theorem clwwlksnun
Dummy variables 𝑦 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eliun 4524 . . 3 (𝑦 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ ∃𝑥𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})
2 fveq1 6190 . . . . . . 7 (𝑤 = 𝑦 → (𝑤‘0) = (𝑦‘0))
32eqeq1d 2624 . . . . . 6 (𝑤 = 𝑦 → ((𝑤‘0) = 𝑥 ↔ (𝑦‘0) = 𝑥))
43elrab 3363 . . . . 5 (𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
54rexbii 3041 . . . 4 (∃𝑥𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
6 simpl 473 . . . . . . 7 ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺))
76a1i 11 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
87rexlimdvw 3034 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) → 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
9 clwwlksnun.v . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
10 eqid 2622 . . . . . . . . 9 (Edg‘𝐺) = (Edg‘𝐺)
119, 10clwwlknp 26887 . . . . . . . 8 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)))
1211anim2i 593 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))))
1310, 9usgrpredgv 26089 . . . . . . . . . . . . . . 15 ((𝐺 ∈ USGraph ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → (( lastS ‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉))
1413ex 450 . . . . . . . . . . . . . 14 (𝐺 ∈ USGraph → ({( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (( lastS ‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉)))
15 simpr 477 . . . . . . . . . . . . . 14 ((( lastS ‘𝑦) ∈ 𝑉 ∧ (𝑦‘0) ∈ 𝑉) → (𝑦‘0) ∈ 𝑉)
1614, 15syl6 35 . . . . . . . . . . . . 13 (𝐺 ∈ USGraph → ({( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (𝑦‘0) ∈ 𝑉))
1716adantr 481 . . . . . . . . . . . 12 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → ({( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → (𝑦‘0) ∈ 𝑉))
1817com12 32 . . . . . . . . . . 11 ({( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺) → ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦‘0) ∈ 𝑉))
19183ad2ant3 1084 . . . . . . . . . 10 (((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺)) → ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦‘0) ∈ 𝑉))
2019impcom 446 . . . . . . . . 9 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦‘0) ∈ 𝑉)
21 simpr 477 . . . . . . . . . . . 12 ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → 𝑥 = (𝑦‘0))
2221eqcomd 2628 . . . . . . . . . . 11 ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦‘0) = 𝑥)
2322biantrud 528 . . . . . . . . . 10 ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2423bicomd 213 . . . . . . . . 9 ((((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) ∧ 𝑥 = (𝑦‘0)) → ((𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
2520, 24rspcedv 3313 . . . . . . . 8 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2625adantld 483 . . . . . . 7 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ ((𝑦 ∈ Word 𝑉 ∧ (#‘𝑦) = 𝑁) ∧ ∀𝑖 ∈ (0..^(𝑁 − 1)){(𝑦𝑖), (𝑦‘(𝑖 + 1))} ∈ (Edg‘𝐺) ∧ {( lastS ‘𝑦), (𝑦‘0)} ∈ (Edg‘𝐺))) → (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
2712, 26mpcom 38 . . . . . 6 (((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) ∧ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥))
2827ex 450 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) → ∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥)))
298, 28impbid 202 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (∃𝑥𝑉 (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ∧ (𝑦‘0) = 𝑥) ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
305, 29syl5bb 272 . . 3 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (∃𝑥𝑉 𝑦 ∈ {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ↔ 𝑦 ∈ (𝑁 ClWWalksN 𝐺)))
311, 30syl5rbb 273 . 2 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑦 ∈ (𝑁 ClWWalksN 𝐺) ↔ 𝑦 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}))
3231eqrdv 2620 1 ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 ClWWalksN 𝐺) = 𝑥𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  wrex 2913  {crab 2916  {cpr 4179   ciun 4520  cfv 5888  (class class class)co 6650  0cc0 9936  1c1 9937   + caddc 9939  cmin 10266  0cn0 11292  ..^cfzo 12465  #chash 13117  Word cword 13291   lastS clsw 13292  Vtxcvtx 25874  Edgcedg 25939   USGraph cusgr 26044   ClWWalksN cclwwlksn 26876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-edg 25940  df-umgr 25978  df-usgr 26046  df-clwwlks 26877  df-clwwlksn 26878
This theorem is referenced by:  numclwwlk4  27244
  Copyright terms: Public domain W3C validator