![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > numclwwlk4 | Structured version Visualization version GIF version |
Description: The total number of closed walks in a finite simple graph is the sum of the numbers of closed walks starting at each of its vertices. (Contributed by Alexander van der Vekens, 7-Oct-2018.) (Revised by AV, 2-Jun-2021.) |
Ref | Expression |
---|---|
numclwwlk3.v | ⊢ 𝑉 = (Vtx‘𝐺) |
numclwwlk3.f | ⊢ 𝐹 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) |
Ref | Expression |
---|---|
numclwwlk4 | ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (#‘(𝑁 ClWWalksN 𝐺)) = Σ𝑥 ∈ 𝑉 (#‘(𝑥𝐹𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fusgrusgr 26214 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝐺 ∈ USGraph ) | |
2 | nnnn0 11299 | . . . 4 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0) | |
3 | numclwwlk3.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
4 | 3 | clwwlksnun 26974 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ ℕ0) → (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) |
5 | 1, 2, 4 | syl2an 494 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (𝑁 ClWWalksN 𝐺) = ∪ 𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) |
6 | 5 | fveq2d 6195 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (#‘(𝑁 ClWWalksN 𝐺)) = (#‘∪ 𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})) |
7 | 3 | fusgrvtxfi 26211 | . . . 4 ⊢ (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin) |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → 𝑉 ∈ Fin) |
9 | eqid 2622 | . . . . . . . 8 ⊢ (Vtx‘𝐺) = (Vtx‘𝐺) | |
10 | 9 | fusgrvtxfi 26211 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin) |
11 | 10 | adantr 481 | . . . . . 6 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (Vtx‘𝐺) ∈ Fin) |
12 | clwwlksnfi 26913 | . . . . . 6 ⊢ ((Vtx‘𝐺) ∈ Fin → (𝑁 ClWWalksN 𝐺) ∈ Fin) | |
13 | 11, 12 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (𝑁 ClWWalksN 𝐺) ∈ Fin) |
14 | 13 | adantr 481 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → (𝑁 ClWWalksN 𝐺) ∈ Fin) |
15 | rabfi 8185 | . . . 4 ⊢ ((𝑁 ClWWalksN 𝐺) ∈ Fin → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∈ Fin) | |
16 | 14, 15 | syl 17 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} ∈ Fin) |
17 | clwwlksndisj 26973 | . . . 4 ⊢ Disj 𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} | |
18 | 17 | a1i 11 | . . 3 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → Disj 𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) |
19 | 8, 16, 18 | hashiun 14554 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (#‘∪ 𝑥 ∈ 𝑉 {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) = Σ𝑥 ∈ 𝑉 (#‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥})) |
20 | simpr 477 | . . . . . . . 8 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℕ) | |
21 | 20 | anim1i 592 | . . . . . . 7 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → (𝑁 ∈ ℕ ∧ 𝑥 ∈ 𝑉)) |
22 | 21 | ancomd 467 | . . . . . 6 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → (𝑥 ∈ 𝑉 ∧ 𝑁 ∈ ℕ)) |
23 | numclwwlk3.f | . . . . . . 7 ⊢ 𝐹 = (𝑣 ∈ 𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑣}) | |
24 | 23 | numclwwlkovf 27213 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑉 ∧ 𝑁 ∈ ℕ) → (𝑥𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) |
25 | 22, 24 | syl 17 | . . . . 5 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → (𝑥𝐹𝑁) = {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) |
26 | 25 | eqcomd 2628 | . . . 4 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → {𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥} = (𝑥𝐹𝑁)) |
27 | 26 | fveq2d 6195 | . . 3 ⊢ (((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) ∧ 𝑥 ∈ 𝑉) → (#‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) = (#‘(𝑥𝐹𝑁))) |
28 | 27 | sumeq2dv 14433 | . 2 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → Σ𝑥 ∈ 𝑉 (#‘{𝑤 ∈ (𝑁 ClWWalksN 𝐺) ∣ (𝑤‘0) = 𝑥}) = Σ𝑥 ∈ 𝑉 (#‘(𝑥𝐹𝑁))) |
29 | 6, 19, 28 | 3eqtrd 2660 | 1 ⊢ ((𝐺 ∈ FinUSGraph ∧ 𝑁 ∈ ℕ) → (#‘(𝑁 ClWWalksN 𝐺)) = Σ𝑥 ∈ 𝑉 (#‘(𝑥𝐹𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {crab 2916 ∪ ciun 4520 Disj wdisj 4620 ‘cfv 5888 (class class class)co 6650 ↦ cmpt2 6652 Fincfn 7955 0cc0 9936 ℕcn 11020 ℕ0cn0 11292 #chash 13117 Σcsu 14416 Vtxcvtx 25874 USGraph cusgr 26044 FinUSGraph cfusgr 26208 ClWWalksN cclwwlksn 26876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-inf2 8538 ax-cnex 9992 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 ax-pre-sup 10014 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-fal 1489 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-disj 4621 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-1o 7560 df-2o 7561 df-oadd 7564 df-er 7742 df-map 7859 df-pm 7860 df-en 7956 df-dom 7957 df-sdom 7958 df-fin 7959 df-sup 8348 df-oi 8415 df-card 8765 df-cda 8990 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-div 10685 df-nn 11021 df-2 11079 df-3 11080 df-n0 11293 df-z 11378 df-uz 11688 df-rp 11833 df-fz 12327 df-fzo 12466 df-seq 12802 df-exp 12861 df-hash 13118 df-word 13299 df-cj 13839 df-re 13840 df-im 13841 df-sqrt 13975 df-abs 13976 df-clim 14219 df-sum 14417 df-edg 25940 df-umgr 25978 df-usgr 26046 df-fusgr 26209 df-clwwlks 26877 df-clwwlksn 26878 |
This theorem is referenced by: numclwwlk6 27248 |
Copyright terms: Public domain | W3C validator |