Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cmtfvalN Structured version   Visualization version   GIF version

Theorem cmtfvalN 34497
Description: Value of commutes relation. (Contributed by NM, 6-Nov-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cmtfval.b 𝐵 = (Base‘𝐾)
cmtfval.j = (join‘𝐾)
cmtfval.m = (meet‘𝐾)
cmtfval.o = (oc‘𝐾)
cmtfval.c 𝐶 = (cm‘𝐾)
Assertion
Ref Expression
cmtfvalN (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)   (𝑥,𝑦)

Proof of Theorem cmtfvalN
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 elex 3212 . 2 (𝐾𝐴𝐾 ∈ V)
2 cmtfval.c . . 3 𝐶 = (cm‘𝐾)
3 fveq2 6191 . . . . . . . 8 (𝑝 = 𝐾 → (Base‘𝑝) = (Base‘𝐾))
4 cmtfval.b . . . . . . . 8 𝐵 = (Base‘𝐾)
53, 4syl6eqr 2674 . . . . . . 7 (𝑝 = 𝐾 → (Base‘𝑝) = 𝐵)
65eleq2d 2687 . . . . . 6 (𝑝 = 𝐾 → (𝑥 ∈ (Base‘𝑝) ↔ 𝑥𝐵))
75eleq2d 2687 . . . . . 6 (𝑝 = 𝐾 → (𝑦 ∈ (Base‘𝑝) ↔ 𝑦𝐵))
8 fveq2 6191 . . . . . . . . 9 (𝑝 = 𝐾 → (join‘𝑝) = (join‘𝐾))
9 cmtfval.j . . . . . . . . 9 = (join‘𝐾)
108, 9syl6eqr 2674 . . . . . . . 8 (𝑝 = 𝐾 → (join‘𝑝) = )
11 fveq2 6191 . . . . . . . . . 10 (𝑝 = 𝐾 → (meet‘𝑝) = (meet‘𝐾))
12 cmtfval.m . . . . . . . . . 10 = (meet‘𝐾)
1311, 12syl6eqr 2674 . . . . . . . . 9 (𝑝 = 𝐾 → (meet‘𝑝) = )
1413oveqd 6667 . . . . . . . 8 (𝑝 = 𝐾 → (𝑥(meet‘𝑝)𝑦) = (𝑥 𝑦))
15 eqidd 2623 . . . . . . . . 9 (𝑝 = 𝐾𝑥 = 𝑥)
16 fveq2 6191 . . . . . . . . . . 11 (𝑝 = 𝐾 → (oc‘𝑝) = (oc‘𝐾))
17 cmtfval.o . . . . . . . . . . 11 = (oc‘𝐾)
1816, 17syl6eqr 2674 . . . . . . . . . 10 (𝑝 = 𝐾 → (oc‘𝑝) = )
1918fveq1d 6193 . . . . . . . . 9 (𝑝 = 𝐾 → ((oc‘𝑝)‘𝑦) = ( 𝑦))
2013, 15, 19oveq123d 6671 . . . . . . . 8 (𝑝 = 𝐾 → (𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)) = (𝑥 ( 𝑦)))
2110, 14, 20oveq123d 6671 . . . . . . 7 (𝑝 = 𝐾 → ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) = ((𝑥 𝑦) (𝑥 ( 𝑦))))
2221eqeq2d 2632 . . . . . 6 (𝑝 = 𝐾 → (𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))) ↔ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
236, 7, 223anbi123d 1399 . . . . 5 (𝑝 = 𝐾 → ((𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦)))) ↔ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))))
2423opabbidv 4716 . . . 4 (𝑝 = 𝐾 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
25 df-cmtN 34464 . . . 4 cm = (𝑝 ∈ V ↦ {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ (Base‘𝑝) ∧ 𝑦 ∈ (Base‘𝑝) ∧ 𝑥 = ((𝑥(meet‘𝑝)𝑦)(join‘𝑝)(𝑥(meet‘𝑝)((oc‘𝑝)‘𝑦))))})
26 df-3an 1039 . . . . . 6 ((𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))) ↔ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦)))))
2726opabbii 4717 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))}
28 fvex 6201 . . . . . . . 8 (Base‘𝐾) ∈ V
294, 28eqeltri 2697 . . . . . . 7 𝐵 ∈ V
3029, 29xpex 6962 . . . . . 6 (𝐵 × 𝐵) ∈ V
31 opabssxp 5193 . . . . . 6 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ⊆ (𝐵 × 𝐵)
3230, 31ssexi 4803 . . . . 5 {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ 𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ∈ V
3327, 32eqeltri 2697 . . . 4 {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))} ∈ V
3424, 25, 33fvmpt 6282 . . 3 (𝐾 ∈ V → (cm‘𝐾) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
352, 34syl5eq 2668 . 2 (𝐾 ∈ V → 𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
361, 35syl 17 1 (𝐾𝐴𝐶 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐵𝑦𝐵𝑥 = ((𝑥 𝑦) (𝑥 ( 𝑦))))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  {copab 4712   × cxp 5112  cfv 5888  (class class class)co 6650  Basecbs 15857  occoc 15949  joincjn 16944  meetcmee 16945  cmccmtN 34460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-ov 6653  df-cmtN 34464
This theorem is referenced by:  cmtvalN  34498
  Copyright terms: Public domain W3C validator