![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oveq123d | Structured version Visualization version GIF version |
Description: Equality deduction for operation value. (Contributed by FL, 22-Dec-2008.) |
Ref | Expression |
---|---|
oveq123d.1 | ⊢ (𝜑 → 𝐹 = 𝐺) |
oveq123d.2 | ⊢ (𝜑 → 𝐴 = 𝐵) |
oveq123d.3 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
oveq123d | ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq123d.1 | . . 3 ⊢ (𝜑 → 𝐹 = 𝐺) | |
2 | 1 | oveqd 6667 | . 2 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐴𝐺𝐶)) |
3 | oveq123d.2 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | oveq123d.3 | . . 3 ⊢ (𝜑 → 𝐶 = 𝐷) | |
5 | 3, 4 | oveq12d 6668 | . 2 ⊢ (𝜑 → (𝐴𝐺𝐶) = (𝐵𝐺𝐷)) |
6 | 2, 5 | eqtrd 2656 | 1 ⊢ (𝜑 → (𝐴𝐹𝐶) = (𝐵𝐺𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 (class class class)co 6650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 |
This theorem is referenced by: csbov123 6687 prdsplusgfval 16134 prdsmulrfval 16136 prdsvscafval 16140 prdsdsval2 16144 xpsaddlem 16235 xpsvsca 16239 iscat 16333 iscatd 16334 iscatd2 16342 catcocl 16346 catass 16347 moni 16396 rcaninv 16454 subccocl 16505 isfunc 16524 funcco 16531 idfucl 16541 cofuval 16542 cofuval2 16547 cofucl 16548 funcres 16556 ressffth 16598 isnat 16607 nati 16615 fuccoval 16623 coaval 16718 catcisolem 16756 xpcco 16823 xpcco2 16827 1stfcl 16837 2ndfcl 16838 prfcl 16843 evlf2 16858 evlfcllem 16861 evlfcl 16862 curfval 16863 curf1 16865 curf12 16867 curf1cl 16868 curf2 16869 curf2val 16870 curf2cl 16871 curfcl 16872 uncfcurf 16879 hofval 16892 hof2fval 16895 hofcl 16899 yonedalem4a 16915 yonedalem3 16920 yonedainv 16921 isdlat 17193 issgrp 17285 ismndd 17313 grpsubfval 17464 grpsubpropd 17520 imasgrp 17531 subgsub 17606 eqgfval 17642 dpjfval 18454 issrg 18507 isring 18551 isringd 18585 dvrfval 18684 isdrngd 18772 issrngd 18861 islmodd 18869 isassa 19315 isassad 19323 asclfval 19334 ressascl 19344 psrval 19362 coe1tm 19643 evl1varpw 19725 isphld 19999 pjfval 20050 islindf 20151 scmatval 20310 mdetfval 20392 smadiadetr 20481 pmatcollpw2lem 20582 pm2mpval 20600 pm2mpghm 20621 chpmatfval 20635 cpmadugsumlemB 20679 xkohmeo 21618 xpsdsval 22186 prdsxmslem2 22334 nmfval 22393 nmpropd 22398 nmpropd2 22399 subgnm 22437 tngnm 22455 cph2di 23007 cphassr 23012 ipcau2 23033 tchcphlem2 23035 q1pval 23913 r1pval 23916 dvntaylp 24125 israg 25592 ttgval 25755 grpodivfval 27388 dipfval 27557 lnoval 27607 ressnm 29651 isslmd 29755 qqhval 30018 sitgval 30394 rdgeqoa 33218 prdsbnd2 33594 isrngo 33696 lflset 34346 islfld 34349 ldualset 34412 cmtfvalN 34497 isoml 34525 ltrnfset 35403 trlfset 35447 docaffvalN 36410 diblss 36459 dihffval 36519 dihfval 36520 hvmapffval 37047 hvmapfval 37048 hgmapfval 37178 mendval 37753 hoidmvlelem3 40811 hspmbllem2 40841 isasslaw 41828 isrng 41876 lidlmsgrp 41926 lidlrng 41927 zlmodzxzscm 42135 lcoop 42200 lincvalsng 42205 lincvalpr 42207 lincdifsn 42213 islininds 42235 |
Copyright terms: Public domain | W3C validator |