![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cncfrss2 | Structured version Visualization version GIF version |
Description: Reverse closure of the continuous function predicate. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
cncfrss2 | ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cncf 22681 | . . 3 ⊢ –cn→ = (𝑎 ∈ 𝒫 ℂ, 𝑏 ∈ 𝒫 ℂ ↦ {𝑓 ∈ (𝑏 ↑𝑚 𝑎) ∣ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ ℝ+ ∃𝑧 ∈ ℝ+ ∀𝑤 ∈ 𝑎 ((abs‘(𝑥 − 𝑤)) < 𝑧 → (abs‘((𝑓‘𝑥) − (𝑓‘𝑤))) < 𝑦)}) | |
2 | 1 | elmpt2cl2 6878 | . 2 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ∈ 𝒫 ℂ) |
3 | 2 | elpwid 4170 | 1 ⊢ (𝐹 ∈ (𝐴–cn→𝐵) → 𝐵 ⊆ ℂ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ∀wral 2912 ∃wrex 2913 {crab 2916 ⊆ wss 3574 𝒫 cpw 4158 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 ℂcc 9934 < clt 10074 − cmin 10266 ℝ+crp 11832 abscabs 13974 –cn→ccncf 22679 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-dm 5124 df-iota 5851 df-fv 5896 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-cncf 22681 |
This theorem is referenced by: cncff 22696 cncfi 22697 rescncf 22700 climcncf 22703 cncfco 22710 cncfcnvcn 22724 cnlimci 23653 cncfmptssg 40083 cncfcompt 40096 |
Copyright terms: Public domain | W3C validator |