MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cncfcnvcn Structured version   Visualization version   GIF version

Theorem cncfcnvcn 22724
Description: Rewrite cmphaushmeo 21603 for functions on the complex numbers. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
cncfcnvcn.j 𝐽 = (TopOpen‘ℂfld)
cncfcnvcn.k 𝐾 = (𝐽t 𝑋)
Assertion
Ref Expression
cncfcnvcn ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑌cn𝑋)))

Proof of Theorem cncfcnvcn
StepHypRef Expression
1 simpr 477 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐹 ∈ (𝑋cn𝑌))
2 cncfrss 22694 . . . . . 6 (𝐹 ∈ (𝑋cn𝑌) → 𝑋 ⊆ ℂ)
32adantl 482 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 ⊆ ℂ)
4 cncfrss2 22695 . . . . . 6 (𝐹 ∈ (𝑋cn𝑌) → 𝑌 ⊆ ℂ)
54adantl 482 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 ⊆ ℂ)
6 cncfcnvcn.j . . . . . 6 𝐽 = (TopOpen‘ℂfld)
7 cncfcnvcn.k . . . . . 6 𝐾 = (𝐽t 𝑋)
8 eqid 2622 . . . . . 6 (𝐽t 𝑌) = (𝐽t 𝑌)
96, 7, 8cncfcn 22712 . . . . 5 ((𝑋 ⊆ ℂ ∧ 𝑌 ⊆ ℂ) → (𝑋cn𝑌) = (𝐾 Cn (𝐽t 𝑌)))
103, 5, 9syl2anc 693 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝑋cn𝑌) = (𝐾 Cn (𝐽t 𝑌)))
111, 10eleqtrd 2703 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)))
12 ishmeo 21562 . . . 4 (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ (𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)) ∧ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
1312baib 944 . . 3 (𝐹 ∈ (𝐾 Cn (𝐽t 𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
1411, 13syl 17 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
156cnfldtop 22587 . . . . . 6 𝐽 ∈ Top
166cnfldtopon 22586 . . . . . . . 8 𝐽 ∈ (TopOn‘ℂ)
1716toponunii 20721 . . . . . . 7 ℂ = 𝐽
1817restuni 20966 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑋 ⊆ ℂ) → 𝑋 = (𝐽t 𝑋))
1915, 3, 18sylancr 695 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 = (𝐽t 𝑋))
207unieqi 4445 . . . . 5 𝐾 = (𝐽t 𝑋)
2119, 20syl6eqr 2674 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑋 = 𝐾)
22 f1oeq2 6128 . . . 4 (𝑋 = 𝐾 → (𝐹:𝑋1-1-onto (𝐽t 𝑌) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
2321, 22syl 17 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto (𝐽t 𝑌) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
2417restuni 20966 . . . . 5 ((𝐽 ∈ Top ∧ 𝑌 ⊆ ℂ) → 𝑌 = (𝐽t 𝑌))
2515, 5, 24sylancr 695 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 = (𝐽t 𝑌))
26 f1oeq3 6129 . . . 4 (𝑌 = (𝐽t 𝑌) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto (𝐽t 𝑌)))
2725, 26syl 17 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto (𝐽t 𝑌)))
28 simpl 473 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝐾 ∈ Comp)
296cnfldhaus 22588 . . . . 5 𝐽 ∈ Haus
30 cnex 10017 . . . . . . 7 ℂ ∈ V
3130ssex 4802 . . . . . 6 (𝑌 ⊆ ℂ → 𝑌 ∈ V)
325, 31syl 17 . . . . 5 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → 𝑌 ∈ V)
33 resthaus 21172 . . . . 5 ((𝐽 ∈ Haus ∧ 𝑌 ∈ V) → (𝐽t 𝑌) ∈ Haus)
3429, 32, 33sylancr 695 . . . 4 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐽t 𝑌) ∈ Haus)
35 eqid 2622 . . . . 5 𝐾 = 𝐾
36 eqid 2622 . . . . 5 (𝐽t 𝑌) = (𝐽t 𝑌)
3735, 36cmphaushmeo 21603 . . . 4 ((𝐾 ∈ Comp ∧ (𝐽t 𝑌) ∈ Haus ∧ 𝐹 ∈ (𝐾 Cn (𝐽t 𝑌))) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
3828, 34, 11, 37syl3anc 1326 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝐾Homeo(𝐽t 𝑌)) ↔ 𝐹: 𝐾1-1-onto (𝐽t 𝑌)))
3923, 27, 383bitr4d 300 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝐾Homeo(𝐽t 𝑌))))
406, 8, 7cncfcn 22712 . . . 4 ((𝑌 ⊆ ℂ ∧ 𝑋 ⊆ ℂ) → (𝑌cn𝑋) = ((𝐽t 𝑌) Cn 𝐾))
415, 3, 40syl2anc 693 . . 3 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝑌cn𝑋) = ((𝐽t 𝑌) Cn 𝐾))
4241eleq2d 2687 . 2 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹 ∈ (𝑌cn𝑋) ↔ 𝐹 ∈ ((𝐽t 𝑌) Cn 𝐾)))
4314, 39, 423bitr4d 300 1 ((𝐾 ∈ Comp ∧ 𝐹 ∈ (𝑋cn𝑌)) → (𝐹:𝑋1-1-onto𝑌𝐹 ∈ (𝑌cn𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1483  wcel 1990  Vcvv 3200  wss 3574   cuni 4436  ccnv 5113  1-1-ontowf1o 5887  cfv 5888  (class class class)co 6650  cc 9934  t crest 16081  TopOpenctopn 16082  fldccnfld 19746  Topctop 20698   Cn ccn 21028  Hauscha 21112  Compccmp 21189  Homeochmeo 21556  cnccncf 22679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-z 11378  df-dec 11494  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-icc 12182  df-fz 12327  df-seq 12802  df-exp 12861  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-rest 16083  df-topn 16084  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-cnfld 19747  df-top 20699  df-topon 20716  df-topsp 20737  df-bases 20750  df-cld 20823  df-cls 20825  df-cn 21031  df-cnp 21032  df-haus 21119  df-cmp 21190  df-hmeo 21558  df-xms 22125  df-ms 22126  df-cncf 22681
This theorem is referenced by:  dvcnvrelem2  23781
  Copyright terms: Public domain W3C validator