MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cntrval Structured version   Visualization version   GIF version

Theorem cntrval 17752
Description: Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
cntrval.b 𝐵 = (Base‘𝑀)
cntrval.z 𝑍 = (Cntz‘𝑀)
Assertion
Ref Expression
cntrval (𝑍𝐵) = (Cntr‘𝑀)

Proof of Theorem cntrval
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . 6 (𝑚 = 𝑀 → (Cntz‘𝑚) = (Cntz‘𝑀))
2 cntrval.z . . . . . 6 𝑍 = (Cntz‘𝑀)
31, 2syl6eqr 2674 . . . . 5 (𝑚 = 𝑀 → (Cntz‘𝑚) = 𝑍)
4 fveq2 6191 . . . . . 6 (𝑚 = 𝑀 → (Base‘𝑚) = (Base‘𝑀))
5 cntrval.b . . . . . 6 𝐵 = (Base‘𝑀)
64, 5syl6eqr 2674 . . . . 5 (𝑚 = 𝑀 → (Base‘𝑚) = 𝐵)
73, 6fveq12d 6197 . . . 4 (𝑚 = 𝑀 → ((Cntz‘𝑚)‘(Base‘𝑚)) = (𝑍𝐵))
8 df-cntr 17751 . . . 4 Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚)))
9 fvex 6201 . . . 4 (𝑍𝐵) ∈ V
107, 8, 9fvmpt 6282 . . 3 (𝑀 ∈ V → (Cntr‘𝑀) = (𝑍𝐵))
1110eqcomd 2628 . 2 (𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
12 0fv 6227 . . 3 (∅‘𝐵) = ∅
13 fvprc 6185 . . . . 5 𝑀 ∈ V → (Cntz‘𝑀) = ∅)
142, 13syl5eq 2668 . . . 4 𝑀 ∈ V → 𝑍 = ∅)
1514fveq1d 6193 . . 3 𝑀 ∈ V → (𝑍𝐵) = (∅‘𝐵))
16 fvprc 6185 . . 3 𝑀 ∈ V → (Cntr‘𝑀) = ∅)
1712, 15, 163eqtr4a 2682 . 2 𝑀 ∈ V → (𝑍𝐵) = (Cntr‘𝑀))
1811, 17pm2.61i 176 1 (𝑍𝐵) = (Cntr‘𝑀)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  Vcvv 3200  c0 3915  cfv 5888  Basecbs 15857  Cntzccntz 17748  Cntrccntr 17749
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fv 5896  df-cntr 17751
This theorem is referenced by:  cntri  17763  cntrsubgnsg  17773  cntrnsg  17774  oppgcntr  17795
  Copyright terms: Public domain W3C validator