![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvprc | Structured version Visualization version GIF version |
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.) |
Ref | Expression |
---|---|
fvprc | ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brprcneu 6184 | . 2 ⊢ (¬ 𝐴 ∈ V → ¬ ∃!𝑥 𝐴𝐹𝑥) | |
2 | tz6.12-2 6182 | . 2 ⊢ (¬ ∃!𝑥 𝐴𝐹𝑥 → (𝐹‘𝐴) = ∅) | |
3 | 1, 2 | syl 17 | 1 ⊢ (¬ 𝐴 ∈ V → (𝐹‘𝐴) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 = wceq 1483 ∈ wcel 1990 ∃!weu 2470 Vcvv 3200 ∅c0 3915 class class class wbr 4653 ‘cfv 5888 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 ax-pow 4843 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 |
This theorem is referenced by: dffv3 6187 fvrn0 6216 ndmfv 6218 fv2prc 6228 csbfv 6233 dffv2 6271 brfvopabrbr 6279 fvmpti 6281 fvmptnf 6302 fvunsn 6445 fvmptopab 6697 brfvopab 6700 1stval 7170 2ndval 7171 fipwuni 8332 fipwss 8335 tctr 8616 ranklim 8707 rankuni 8726 alephsing 9098 itunisuc 9241 itunitc1 9242 itunitc 9243 tskmcl 9663 hashfn 13164 trclfvg 13756 trclfvcotrg 13757 strfvss 15880 strfvi 15913 setsnid 15915 elbasfv 15920 ressbas 15930 resslem 15933 firest 16093 topnval 16095 homffval 16350 comfffval 16358 oppchomfval 16374 oppcbas 16378 xpcbas 16818 lubfun 16980 glbfun 16993 oduval 17130 oduleval 17131 odumeet 17140 odujoin 17142 oduclatb 17144 ipopos 17160 isipodrs 17161 plusffval 17247 grpidval 17260 gsum0 17278 ismnd 17297 frmdplusg 17391 frmd0 17397 dfgrp2e 17448 grpinvfval 17460 grpinvfvi 17463 grpsubfval 17464 mulgfval 17542 mulgfvi 17545 cntrval 17752 cntzval 17754 cntzrcl 17760 oppgval 17777 oppgplusfval 17778 symgbas 17800 symgplusg 17809 lactghmga 17824 pmtrfrn 17878 psgnfval 17920 odfval 17952 oppglsm 18057 efgval 18130 mgpval 18492 mgpplusg 18493 ringidval 18503 opprval 18624 opprmulfval 18625 dvdsrval 18645 invrfval 18673 dvrfval 18684 staffval 18847 scaffval 18881 islss 18935 sralem 19177 srasca 19181 sravsca 19182 sraip 19183 rlmval 19191 rlmsca2 19201 2idlval 19233 rrgval 19287 asclfval 19334 psrbas 19378 psr1val 19556 vr1val 19562 ply1val 19564 ply1basfvi 19611 ply1plusgfvi 19612 psr1sca2 19621 ply1sca2 19624 ply1ascl 19628 evl1fval 19692 evl1fval1 19695 zrhval 19856 zlmlem 19865 zlmvsca 19870 chrval 19873 evpmss 19932 ipffval 19993 ocvval 20011 elocv 20012 thlbas 20040 thlle 20041 thloc 20043 pjfval 20050 toponsspwpw 20726 istps 20738 tgdif0 20796 indislem 20804 txindislem 21436 fsubbas 21671 filuni 21689 ussval 22063 isusp 22065 nmfval 22393 tnglem 22444 tngds 22452 tchval 23017 deg1fval 23840 deg1fvi 23845 uc1pval 23899 mon1pval 23901 ttglem 25756 vtxval 25878 iedgval 25879 vtxvalprc 25937 iedgvalprc 25938 edgval 25941 uvtxa0 26294 uvtxa01vtx 26298 wwlks 26727 wwlksn 26729 clwwlks 26879 clwwlksn 26881 vafval 27458 bafval 27459 smfval 27460 vsfval 27488 resvsca 29830 resvlem 29831 mvtval 31397 mexval 31399 mexval2 31400 mdvval 31401 mrsubfval 31405 mrsubrn 31410 mrsub0 31413 mrsubf 31414 mrsubccat 31415 mrsubcn 31416 mrsubco 31418 mrsubvrs 31419 msubfval 31421 elmsubrn 31425 msubrn 31426 msubf 31429 mvhfval 31430 mpstval 31432 msrfval 31434 mstaval 31441 mclsrcl 31458 mppsval 31469 mthmval 31472 sltval2 31809 sltintdifex 31814 fvsingle 32027 funpartfv 32052 fullfunfv 32054 rankeq1o 32278 atbase 34576 llnbase 34795 lplnbase 34820 lvolbase 34864 lhpbase 35284 mzpmfp 37310 kelac1 37633 mendbas 37754 mendplusgfval 37755 mendmulrfval 37757 mendsca 37759 mendvscafval 37760 brfvimex 38324 clsneibex 38400 neicvgbex 38410 upwlkbprop 41719 sprssspr 41731 sprsymrelfvlem 41740 |
Copyright terms: Public domain | W3C validator |