![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnveqb | Structured version Visualization version GIF version |
Description: Equality theorem for converse. (Contributed by FL, 19-Sep-2011.) |
Ref | Expression |
---|---|
cnveqb | ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnveq 5296 | . 2 ⊢ (𝐴 = 𝐵 → ◡𝐴 = ◡𝐵) | |
2 | dfrel2 5583 | . . . 4 ⊢ (Rel 𝐴 ↔ ◡◡𝐴 = 𝐴) | |
3 | dfrel2 5583 | . . . . . . 7 ⊢ (Rel 𝐵 ↔ ◡◡𝐵 = 𝐵) | |
4 | cnveq 5296 | . . . . . . . . 9 ⊢ (◡𝐴 = ◡𝐵 → ◡◡𝐴 = ◡◡𝐵) | |
5 | eqeq2 2633 | . . . . . . . . 9 ⊢ (𝐵 = ◡◡𝐵 → (◡◡𝐴 = 𝐵 ↔ ◡◡𝐴 = ◡◡𝐵)) | |
6 | 4, 5 | syl5ibr 236 | . . . . . . . 8 ⊢ (𝐵 = ◡◡𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
7 | 6 | eqcoms 2630 | . . . . . . 7 ⊢ (◡◡𝐵 = 𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
8 | 3, 7 | sylbi 207 | . . . . . 6 ⊢ (Rel 𝐵 → (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵)) |
9 | eqeq1 2626 | . . . . . . 7 ⊢ (𝐴 = ◡◡𝐴 → (𝐴 = 𝐵 ↔ ◡◡𝐴 = 𝐵)) | |
10 | 9 | imbi2d 330 | . . . . . 6 ⊢ (𝐴 = ◡◡𝐴 → ((◡𝐴 = ◡𝐵 → 𝐴 = 𝐵) ↔ (◡𝐴 = ◡𝐵 → ◡◡𝐴 = 𝐵))) |
11 | 8, 10 | syl5ibr 236 | . . . . 5 ⊢ (𝐴 = ◡◡𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
12 | 11 | eqcoms 2630 | . . . 4 ⊢ (◡◡𝐴 = 𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
13 | 2, 12 | sylbi 207 | . . 3 ⊢ (Rel 𝐴 → (Rel 𝐵 → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵))) |
14 | 13 | imp 445 | . 2 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (◡𝐴 = ◡𝐵 → 𝐴 = 𝐵)) |
15 | 1, 14 | impbid2 216 | 1 ⊢ ((Rel 𝐴 ∧ Rel 𝐵) → (𝐴 = 𝐵 ↔ ◡𝐴 = ◡𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ◡ccnv 5113 Rel wrel 5119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 |
This theorem is referenced by: cnveq0 5591 weisoeq2 6606 relexpaddg 13793 relexpaddss 38010 |
Copyright terms: Public domain | W3C validator |