Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  relexpaddss Structured version   Visualization version   GIF version

Theorem relexpaddss 38010
Description: The composition of two powers of a relation is a subset of the relation raised to the sum of those exponents. This is equality where 𝑅 is a relation as shown by relexpaddd 13794 or when the sum of the powers isn't 1 as shown by relexpaddg 13793. (Contributed by RP, 3-Jun-2020.)
Assertion
Ref Expression
relexpaddss ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))

Proof of Theorem relexpaddss
StepHypRef Expression
1 elnn0 11294 . . 3 (𝑀 ∈ ℕ0 ↔ (𝑀 ∈ ℕ ∨ 𝑀 = 0))
2 elnn0 11294 . . . . . 6 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
32biimpi 206 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 ∈ ℕ ∨ 𝑁 = 0))
4 relexpaddnn 13791 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
5 eqimss 3657 . . . . . . . 8 (((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
64, 5syl 17 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
763exp 1264 . . . . . 6 (𝑁 ∈ ℕ → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
8 elnn1uz2 11765 . . . . . . 7 (𝑀 ∈ ℕ ↔ (𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)))
9 relco 5633 . . . . . . . . . . . . . 14 Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅)
10 dfrel2 5583 . . . . . . . . . . . . . . 15 (Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
1110biimpi 206 . . . . . . . . . . . . . 14 (Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
129, 11ax-mp 5 . . . . . . . . . . . . 13 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅)
13 cnvco 5308 . . . . . . . . . . . . . . . . 17 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅( I ↾ (dom 𝑅 ∪ ran 𝑅)))
14 cnvresid 5968 . . . . . . . . . . . . . . . . . 18 ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
1514coeq2i 5282 . . . . . . . . . . . . . . . . 17 (𝑅( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
16 coires1 5653 . . . . . . . . . . . . . . . . 17 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
1713, 15, 163eqtri 2648 . . . . . . . . . . . . . . . 16 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
18 eqimss 3657 . . . . . . . . . . . . . . . 16 ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
1917, 18ax-mp 5 . . . . . . . . . . . . . . 15 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
20 cnvss 5294 . . . . . . . . . . . . . . 15 ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)))
2119, 20ax-mp 5 . . . . . . . . . . . . . 14 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
22 resss 5422 . . . . . . . . . . . . . . 15 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
23 cnvss 5294 . . . . . . . . . . . . . . 15 ((𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅(𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅)
2422, 23ax-mp 5 . . . . . . . . . . . . . 14 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
2521, 24sstri 3612 . . . . . . . . . . . . 13 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
2612, 25eqsstr3i 3636 . . . . . . . . . . . 12 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
27 cnvcnvss 5589 . . . . . . . . . . . 12 𝑅𝑅
2826, 27sstri 3612 . . . . . . . . . . 11 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅
2928a1i 11 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅) ⊆ 𝑅)
30 simp1 1061 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 𝑁 = 0)
3130oveq2d 6666 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
32 relexp0g 13762 . . . . . . . . . . . . 13 (𝑅𝑉 → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
33323ad2ant3 1084 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
3431, 33eqtrd 2656 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
35 simp2 1062 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 𝑀 = 1)
3635oveq2d 6666 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟1))
37 relexp1g 13766 . . . . . . . . . . . . 13 (𝑅𝑉 → (𝑅𝑟1) = 𝑅)
38373ad2ant3 1084 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
3936, 38eqtrd 2656 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = 𝑅)
4034, 39coeq12d 5286 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ 𝑅))
4130, 35oveq12d 6668 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 1))
42 1cnd 10056 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → 1 ∈ ℂ)
4342addid2d 10237 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (0 + 1) = 1)
4441, 43eqtrd 2656 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 1)
4544oveq2d 6666 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
4645, 38eqtrd 2656 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
4729, 40, 463sstr4d 3648 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 1 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
48473exp 1264 . . . . . . . 8 (𝑁 = 0 → (𝑀 = 1 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
49 coires1 5653 . . . . . . . . . . . . . 14 ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅))
50 simp2 1062 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ (ℤ‘2))
51 cnvexg 7112 . . . . . . . . . . . . . . . . 17 (𝑅𝑉𝑅 ∈ V)
52513ad2ant3 1084 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅 ∈ V)
53 relexpuzrel 13792 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ (ℤ‘2) ∧ 𝑅 ∈ V) → Rel (𝑅𝑟𝑀))
5450, 52, 53syl2anc 693 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
55 eluz2nn 11726 . . . . . . . . . . . . . . . . . 18 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ)
5650, 55syl 17 . . . . . . . . . . . . . . . . 17 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ)
57 relexpnndm 13781 . . . . . . . . . . . . . . . . 17 ((𝑀 ∈ ℕ ∧ 𝑅 ∈ V) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
5856, 52, 57syl2anc 693 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ dom 𝑅)
59 df-rn 5125 . . . . . . . . . . . . . . . . 17 ran 𝑅 = dom 𝑅
60 ssun2 3777 . . . . . . . . . . . . . . . . 17 ran 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
6159, 60eqsstr3i 3636 . . . . . . . . . . . . . . . 16 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
6258, 61syl6ss 3615 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅))
63 relssres 5437 . . . . . . . . . . . . . . 15 ((Rel (𝑅𝑟𝑀) ∧ dom (𝑅𝑟𝑀) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
6454, 62, 63syl2anc 693 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑀))
6549, 64syl5eq 2668 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑀))
66 cnvco 5308 . . . . . . . . . . . . . 14 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
67 eluzge2nn0 11727 . . . . . . . . . . . . . . . . 17 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℕ0)
6850, 67syl 17 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℕ0)
69 simp3 1063 . . . . . . . . . . . . . . . 16 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑅𝑉)
70 relexpcnv 13775 . . . . . . . . . . . . . . . 16 ((𝑀 ∈ ℕ0𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
7168, 69, 70syl2anc 693 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟𝑀))
7214a1i 11 . . . . . . . . . . . . . . 15 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
7371, 72coeq12d 5286 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
7466, 73syl5eq 2668 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑀) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
7565, 74, 713eqtr4d 2666 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀))
76 relco 5633 . . . . . . . . . . . . 13 Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀))
77 relexpuzrel 13792 . . . . . . . . . . . . . 14 ((𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
78773adant1 1079 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑀))
79 cnveqb 5590 . . . . . . . . . . . . 13 ((Rel (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) ∧ Rel (𝑅𝑟𝑀)) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀)))
8076, 78, 79sylancr 695 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀) ↔ (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀)))
8175, 80mpbird 247 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟𝑀))
82 simp1 1061 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑁 = 0)
8382oveq2d 6666 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
84323ad2ant3 1084 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8583, 84eqtrd 2656 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
8685coeq1d 5283 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ (𝑅𝑟𝑀)))
8782oveq1d 6665 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 𝑀))
88 eluzelcn 11699 . . . . . . . . . . . . . . 15 (𝑀 ∈ (ℤ‘2) → 𝑀 ∈ ℂ)
8950, 88syl 17 . . . . . . . . . . . . . 14 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → 𝑀 ∈ ℂ)
9089addid2d 10237 . . . . . . . . . . . . 13 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (0 + 𝑀) = 𝑀)
9187, 90eqtrd 2656 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑀)
9291oveq2d 6666 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑀))
9381, 86, 923eqtr4d 2666 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
9493, 5syl 17 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 ∈ (ℤ‘2) ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
95943exp 1264 . . . . . . . 8 (𝑁 = 0 → (𝑀 ∈ (ℤ‘2) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
9648, 95jaod 395 . . . . . . 7 (𝑁 = 0 → ((𝑀 = 1 ∨ 𝑀 ∈ (ℤ‘2)) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
978, 96syl5bi 232 . . . . . 6 (𝑁 = 0 → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
987, 97jaoi 394 . . . . 5 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
993, 98syl 17 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
100 elnn1uz2 11765 . . . . . . . 8 (𝑁 ∈ ℕ ↔ (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
101100biimpi 206 . . . . . . 7 (𝑁 ∈ ℕ → (𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)))
102 coires1 5653 . . . . . . . . . . . 12 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅))
103 resss 5422 . . . . . . . . . . . 12 (𝑅 ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ 𝑅
104102, 103eqsstri 3635 . . . . . . . . . . 11 (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ⊆ 𝑅
105104a1i 11 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) ⊆ 𝑅)
106 simp1 1061 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 = 1)
107106oveq2d 6666 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟1))
108373ad2ant3 1084 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟1) = 𝑅)
109107, 108eqtrd 2656 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = 𝑅)
110 simp2 1062 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
111110oveq2d 6666 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
112323ad2ant3 1084 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
113111, 112eqtrd 2656 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
114109, 113coeq12d 5286 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅 ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
115106, 110oveq12d 6668 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (1 + 0))
116 1cnd 10056 . . . . . . . . . . . . . 14 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 1 ∈ ℂ)
117116addid1d 10236 . . . . . . . . . . . . 13 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (1 + 0) = 1)
118115, 117eqtrd 2656 . . . . . . . . . . . 12 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 1)
119118oveq2d 6666 . . . . . . . . . . 11 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟1))
120119, 108eqtrd 2656 . . . . . . . . . 10 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = 𝑅)
121105, 114, 1203sstr4d 3648 . . . . . . . . 9 ((𝑁 = 1 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1221213exp 1264 . . . . . . . 8 (𝑁 = 1 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
123 coires1 5653 . . . . . . . . . . . 12 ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅))
124 relexpuzrel 13792 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
1251243adant2 1080 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → Rel (𝑅𝑟𝑁))
126 simp1 1061 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ (ℤ‘2))
127 eluz2nn 11726 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℕ)
128126, 127syl 17 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℕ)
129 simp3 1063 . . . . . . . . . . . . . . 15 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑅𝑉)
130 relexpnndm 13781 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
131128, 129, 130syl2anc 693 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ dom 𝑅)
132 ssun1 3776 . . . . . . . . . . . . . 14 dom 𝑅 ⊆ (dom 𝑅 ∪ ran 𝑅)
133131, 132syl6ss 3615 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅))
134 relssres 5437 . . . . . . . . . . . . 13 ((Rel (𝑅𝑟𝑁) ∧ dom (𝑅𝑟𝑁) ⊆ (dom 𝑅 ∪ ran 𝑅)) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
135125, 133, 134syl2anc 693 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ↾ (dom 𝑅 ∪ ran 𝑅)) = (𝑅𝑟𝑁))
136123, 135syl5eq 2668 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (𝑅𝑟𝑁))
137 simp2 1062 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
138137oveq2d 6666 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
139323ad2ant3 1084 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
140138, 139eqtrd 2656 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
141140coeq2d 5284 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = ((𝑅𝑟𝑁) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
142137oveq2d 6666 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (𝑁 + 0))
143 eluzelcn 11699 . . . . . . . . . . . . . . 15 (𝑁 ∈ (ℤ‘2) → 𝑁 ∈ ℂ)
144126, 143syl 17 . . . . . . . . . . . . . 14 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 ∈ ℂ)
145144addid1d 10236 . . . . . . . . . . . . 13 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 0) = 𝑁)
146142, 145eqtrd 2656 . . . . . . . . . . . 12 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 𝑁)
147146oveq2d 6666 . . . . . . . . . . 11 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟𝑁))
148136, 141, 1473eqtr4d 2666 . . . . . . . . . 10 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
149148, 5syl 17 . . . . . . . . 9 ((𝑁 ∈ (ℤ‘2) ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1501493exp 1264 . . . . . . . 8 (𝑁 ∈ (ℤ‘2) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
151122, 150jaoi 394 . . . . . . 7 ((𝑁 = 1 ∨ 𝑁 ∈ (ℤ‘2)) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
152101, 151syl 17 . . . . . 6 (𝑁 ∈ ℕ → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
153 coires1 5653 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↾ (dom 𝑅 ∪ ran 𝑅))
154 resres 5409 . . . . . . . . . 10 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ↾ (dom 𝑅 ∪ ran 𝑅)) = ( I ↾ ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅)))
155 inidm 3822 . . . . . . . . . . 11 ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅)) = (dom 𝑅 ∪ ran 𝑅)
156155reseq2i 5393 . . . . . . . . . 10 ( I ↾ ((dom 𝑅 ∪ ran 𝑅) ∩ (dom 𝑅 ∪ ran 𝑅))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
157153, 154, 1563eqtri 2648 . . . . . . . . 9 (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))) = ( I ↾ (dom 𝑅 ∪ ran 𝑅))
158 simp1 1061 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑁 = 0)
159158oveq2d 6666 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = (𝑅𝑟0))
160323ad2ant3 1084 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟0) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
161159, 160eqtrd 2656 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑁) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
162 simp2 1062 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → 𝑀 = 0)
163162oveq2d 6666 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = (𝑅𝑟0))
164163, 160eqtrd 2656 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟𝑀) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
165161, 164coeq12d 5286 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (( I ↾ (dom 𝑅 ∪ ran 𝑅)) ∘ ( I ↾ (dom 𝑅 ∪ ran 𝑅))))
166158, 162oveq12d 6668 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = (0 + 0))
167 00id 10211 . . . . . . . . . . . . 13 (0 + 0) = 0
168167a1i 11 . . . . . . . . . . . 12 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (0 + 0) = 0)
169166, 168eqtrd 2656 . . . . . . . . . . 11 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑁 + 𝑀) = 0)
170169oveq2d 6666 . . . . . . . . . 10 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = (𝑅𝑟0))
171170, 160eqtrd 2656 . . . . . . . . 9 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → (𝑅𝑟(𝑁 + 𝑀)) = ( I ↾ (dom 𝑅 ∪ ran 𝑅)))
172157, 165, 1713eqtr4a 2682 . . . . . . . 8 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) = (𝑅𝑟(𝑁 + 𝑀)))
173172, 5syl 17 . . . . . . 7 ((𝑁 = 0 ∧ 𝑀 = 0 ∧ 𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
1741733exp 1264 . . . . . 6 (𝑁 = 0 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
175152, 174jaoi 394 . . . . 5 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1763, 175syl 17 . . . 4 (𝑁 ∈ ℕ0 → (𝑀 = 0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
17799, 176jaod 395 . . 3 (𝑁 ∈ ℕ0 → ((𝑀 ∈ ℕ ∨ 𝑀 = 0) → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1781, 177syl5bi 232 . 2 (𝑁 ∈ ℕ0 → (𝑀 ∈ ℕ0 → (𝑅𝑉 → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))))
1791783imp 1256 1 ((𝑁 ∈ ℕ0𝑀 ∈ ℕ0𝑅𝑉) → ((𝑅𝑟𝑁) ∘ (𝑅𝑟𝑀)) ⊆ (𝑅𝑟(𝑁 + 𝑀)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  w3a 1037   = wceq 1483  wcel 1990  Vcvv 3200  cun 3572  cin 3573  wss 3574   I cid 5023  ccnv 5113  dom cdm 5114  ran crn 5115  cres 5116  ccom 5118  Rel wrel 5119  cfv 5888  (class class class)co 6650  cc 9934  0cc0 9936  1c1 9937   + caddc 9939  cn 11020  2c2 11070  0cn0 11292  cuz 11687  𝑟crelexp 13760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-seq 12802  df-relexp 13761
This theorem is referenced by:  iunrelexpuztr  38011  cotrclrcl  38034
  Copyright terms: Public domain W3C validator