Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conrel1d Structured version   Visualization version   GIF version

Theorem conrel1d 37955
Description: Deduction about composition with a class with no relational content. (Contributed by Richard Penner, 24-Dec-2019.)
Hypothesis
Ref Expression
conrel1d.a (𝜑𝐴 = ∅)
Assertion
Ref Expression
conrel1d (𝜑 → (𝐴𝐵) = ∅)

Proof of Theorem conrel1d
StepHypRef Expression
1 incom 3805 . . 3 (dom 𝐴 ∩ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴)
2 dfdm4 5316 . . . . 5 dom 𝐴 = ran 𝐴
3 conrel1d.a . . . . . . 7 (𝜑𝐴 = ∅)
43rneqd 5353 . . . . . 6 (𝜑 → ran 𝐴 = ran ∅)
5 rn0 5377 . . . . . 6 ran ∅ = ∅
64, 5syl6eq 2672 . . . . 5 (𝜑 → ran 𝐴 = ∅)
72, 6syl5eq 2668 . . . 4 (𝜑 → dom 𝐴 = ∅)
8 ineq2 3808 . . . . 5 (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = (ran 𝐵 ∩ ∅))
9 in0 3968 . . . . 5 (ran 𝐵 ∩ ∅) = ∅
108, 9syl6eq 2672 . . . 4 (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = ∅)
117, 10syl 17 . . 3 (𝜑 → (ran 𝐵 ∩ dom 𝐴) = ∅)
121, 11syl5eq 2668 . 2 (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅)
1312coemptyd 13718 1 (𝜑 → (𝐴𝐵) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  cin 3573  c0 3915  ccnv 5113  dom cdm 5114  ran crn 5115  ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator