![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > conrel1d | Structured version Visualization version GIF version |
Description: Deduction about composition with a class with no relational content. (Contributed by Richard Penner, 24-Dec-2019.) |
Ref | Expression |
---|---|
conrel1d.a | ⊢ (𝜑 → ◡𝐴 = ∅) |
Ref | Expression |
---|---|
conrel1d | ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | incom 3805 | . . 3 ⊢ (dom 𝐴 ∩ ran 𝐵) = (ran 𝐵 ∩ dom 𝐴) | |
2 | dfdm4 5316 | . . . . 5 ⊢ dom 𝐴 = ran ◡𝐴 | |
3 | conrel1d.a | . . . . . . 7 ⊢ (𝜑 → ◡𝐴 = ∅) | |
4 | 3 | rneqd 5353 | . . . . . 6 ⊢ (𝜑 → ran ◡𝐴 = ran ∅) |
5 | rn0 5377 | . . . . . 6 ⊢ ran ∅ = ∅ | |
6 | 4, 5 | syl6eq 2672 | . . . . 5 ⊢ (𝜑 → ran ◡𝐴 = ∅) |
7 | 2, 6 | syl5eq 2668 | . . . 4 ⊢ (𝜑 → dom 𝐴 = ∅) |
8 | ineq2 3808 | . . . . 5 ⊢ (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = (ran 𝐵 ∩ ∅)) | |
9 | in0 3968 | . . . . 5 ⊢ (ran 𝐵 ∩ ∅) = ∅ | |
10 | 8, 9 | syl6eq 2672 | . . . 4 ⊢ (dom 𝐴 = ∅ → (ran 𝐵 ∩ dom 𝐴) = ∅) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → (ran 𝐵 ∩ dom 𝐴) = ∅) |
12 | 1, 11 | syl5eq 2668 | . 2 ⊢ (𝜑 → (dom 𝐴 ∩ ran 𝐵) = ∅) |
13 | 12 | coemptyd 13718 | 1 ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1483 ∩ cin 3573 ∅c0 3915 ◡ccnv 5113 dom cdm 5114 ran crn 5115 ∘ ccom 5118 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |