Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  conrel1d Structured version   Visualization version   Unicode version

Theorem conrel1d 37955
Description: Deduction about composition with a class with no relational content. (Contributed by Richard Penner, 24-Dec-2019.)
Hypothesis
Ref Expression
conrel1d.a  |-  ( ph  ->  `' A  =  (/) )
Assertion
Ref Expression
conrel1d  |-  ( ph  ->  ( A  o.  B
)  =  (/) )

Proof of Theorem conrel1d
StepHypRef Expression
1 incom 3805 . . 3  |-  ( dom 
A  i^i  ran  B )  =  ( ran  B  i^i  dom  A )
2 dfdm4 5316 . . . . 5  |-  dom  A  =  ran  `' A
3 conrel1d.a . . . . . . 7  |-  ( ph  ->  `' A  =  (/) )
43rneqd 5353 . . . . . 6  |-  ( ph  ->  ran  `' A  =  ran  (/) )
5 rn0 5377 . . . . . 6  |-  ran  (/)  =  (/)
64, 5syl6eq 2672 . . . . 5  |-  ( ph  ->  ran  `' A  =  (/) )
72, 6syl5eq 2668 . . . 4  |-  ( ph  ->  dom  A  =  (/) )
8 ineq2 3808 . . . . 5  |-  ( dom 
A  =  (/)  ->  ( ran  B  i^i  dom  A
)  =  ( ran 
B  i^i  (/) ) )
9 in0 3968 . . . . 5  |-  ( ran 
B  i^i  (/) )  =  (/)
108, 9syl6eq 2672 . . . 4  |-  ( dom 
A  =  (/)  ->  ( ran  B  i^i  dom  A
)  =  (/) )
117, 10syl 17 . . 3  |-  ( ph  ->  ( ran  B  i^i  dom 
A )  =  (/) )
121, 11syl5eq 2668 . 2  |-  ( ph  ->  ( dom  A  i^i  ran 
B )  =  (/) )
1312coemptyd 13718 1  |-  ( ph  ->  ( A  o.  B
)  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    i^i cin 3573   (/)c0 3915   `'ccnv 5113   dom cdm 5114   ran crn 5115    o. ccom 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator