| Step | Hyp | Ref
| Expression |
| 1 | | catcoppccl.3 |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 2 | | eqid 2622 |
. . . . . 6
⊢
(Base‘𝑋) =
(Base‘𝑋) |
| 3 | | eqid 2622 |
. . . . . 6
⊢ (Hom
‘𝑋) = (Hom
‘𝑋) |
| 4 | | eqid 2622 |
. . . . . 6
⊢
(comp‘𝑋) =
(comp‘𝑋) |
| 5 | | catcoppccl.o |
. . . . . 6
⊢ 𝑂 = (oppCat‘𝑋) |
| 6 | 2, 3, 4, 5 | oppcval 16373 |
. . . . 5
⊢ (𝑋 ∈ 𝐵 → 𝑂 = ((𝑋 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑋)〉) sSet
〈(comp‘ndx), (𝑥
∈ ((Base‘𝑋)
× (Base‘𝑋)),
𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)))〉)) |
| 7 | 1, 6 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑂 = ((𝑋 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑋)〉) sSet
〈(comp‘ndx), (𝑥
∈ ((Base‘𝑋)
× (Base‘𝑋)),
𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)))〉)) |
| 8 | | catcoppccl.1 |
. . . . 5
⊢ (𝜑 → 𝑈 ∈ WUni) |
| 9 | | inss1 3833 |
. . . . . . 7
⊢ (𝑈 ∩ Cat) ⊆ 𝑈 |
| 10 | | catcoppccl.c |
. . . . . . . . 9
⊢ 𝐶 = (CatCat‘𝑈) |
| 11 | | catcoppccl.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐶) |
| 12 | 10, 11, 8 | catcbas 16747 |
. . . . . . . 8
⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) |
| 13 | 1, 12 | eleqtrd 2703 |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ (𝑈 ∩ Cat)) |
| 14 | 9, 13 | sseldi 3601 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈ 𝑈) |
| 15 | | df-hom 15966 |
. . . . . . . 8
⊢ Hom =
Slot ;14 |
| 16 | | catcoppccl.2 |
. . . . . . . . 9
⊢ (𝜑 → ω ∈ 𝑈) |
| 17 | 8, 16 | wunndx 15878 |
. . . . . . . 8
⊢ (𝜑 → ndx ∈ 𝑈) |
| 18 | 15, 8, 17 | wunstr 15881 |
. . . . . . 7
⊢ (𝜑 → (Hom ‘ndx) ∈
𝑈) |
| 19 | 15, 8, 14 | wunstr 15881 |
. . . . . . . 8
⊢ (𝜑 → (Hom ‘𝑋) ∈ 𝑈) |
| 20 | 8, 19 | wuntpos 9556 |
. . . . . . 7
⊢ (𝜑 → tpos (Hom ‘𝑋) ∈ 𝑈) |
| 21 | 8, 18, 20 | wunop 9544 |
. . . . . 6
⊢ (𝜑 → 〈(Hom ‘ndx),
tpos (Hom ‘𝑋)〉
∈ 𝑈) |
| 22 | 8, 14, 21 | wunsets 15900 |
. . . . 5
⊢ (𝜑 → (𝑋 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑋)〉) ∈
𝑈) |
| 23 | | df-cco 15967 |
. . . . . . 7
⊢ comp =
Slot ;15 |
| 24 | 23, 8, 17 | wunstr 15881 |
. . . . . 6
⊢ (𝜑 → (comp‘ndx) ∈
𝑈) |
| 25 | | df-base 15863 |
. . . . . . . . . 10
⊢ Base =
Slot 1 |
| 26 | 25, 8, 14 | wunstr 15881 |
. . . . . . . . 9
⊢ (𝜑 → (Base‘𝑋) ∈ 𝑈) |
| 27 | 8, 26, 26 | wunxp 9546 |
. . . . . . . 8
⊢ (𝜑 → ((Base‘𝑋) × (Base‘𝑋)) ∈ 𝑈) |
| 28 | 8, 27, 26 | wunxp 9546 |
. . . . . . 7
⊢ (𝜑 → (((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋)) ∈ 𝑈) |
| 29 | 23, 8, 14 | wunstr 15881 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (comp‘𝑋) ∈ 𝑈) |
| 30 | 8, 29 | wunrn 9551 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ran (comp‘𝑋) ∈ 𝑈) |
| 31 | 8, 30 | wununi 9528 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∪ ran (comp‘𝑋) ∈ 𝑈) |
| 32 | 8, 31 | wundm 9550 |
. . . . . . . . . . 11
⊢ (𝜑 → dom ∪ ran (comp‘𝑋) ∈ 𝑈) |
| 33 | 8, 32 | wuncnv 9552 |
. . . . . . . . . 10
⊢ (𝜑 → ◡dom ∪ ran
(comp‘𝑋) ∈ 𝑈) |
| 34 | 8 | wun0 9540 |
. . . . . . . . . . 11
⊢ (𝜑 → ∅ ∈ 𝑈) |
| 35 | 8, 34 | wunsn 9538 |
. . . . . . . . . 10
⊢ (𝜑 → {∅} ∈ 𝑈) |
| 36 | 8, 33, 35 | wunun 9532 |
. . . . . . . . 9
⊢ (𝜑 → (◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) ∈ 𝑈) |
| 37 | 8, 31 | wunrn 9551 |
. . . . . . . . 9
⊢ (𝜑 → ran ∪ ran (comp‘𝑋) ∈ 𝑈) |
| 38 | 8, 36, 37 | wunxp 9546 |
. . . . . . . 8
⊢ (𝜑 → ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ∈ 𝑈) |
| 39 | 8, 38 | wunpw 9529 |
. . . . . . 7
⊢ (𝜑 → 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ∈ 𝑈) |
| 40 | | tposssxp 7356 |
. . . . . . . . . . . 12
⊢ tpos
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ((◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) × ran (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) |
| 41 | | ovssunirn 6681 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑦,
(2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ∪ ran
(comp‘𝑋) |
| 42 | | dmss 5323 |
. . . . . . . . . . . . . . 15
⊢
((〈𝑦,
(2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ∪ ran
(comp‘𝑋) → dom
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ dom ∪
ran (comp‘𝑋)) |
| 43 | 41, 42 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢ dom
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ dom ∪
ran (comp‘𝑋) |
| 44 | | cnvss 5294 |
. . . . . . . . . . . . . 14
⊢ (dom
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ dom ∪
ran (comp‘𝑋) →
◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ◡dom ∪ ran
(comp‘𝑋)) |
| 45 | | unss1 3782 |
. . . . . . . . . . . . . 14
⊢ (◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ◡dom ∪ ran
(comp‘𝑋) →
(◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) ⊆ (◡dom ∪ ran
(comp‘𝑋) ∪
{∅})) |
| 46 | 43, 44, 45 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ (◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) ⊆ (◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) |
| 47 | | rnss 5354 |
. . . . . . . . . . . . . 14
⊢
((〈𝑦,
(2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ∪ ran
(comp‘𝑋) → ran
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ran ∪
ran (comp‘𝑋)) |
| 48 | 41, 47 | ax-mp 5 |
. . . . . . . . . . . . 13
⊢ ran
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ran ∪
ran (comp‘𝑋) |
| 49 | | xpss12 5225 |
. . . . . . . . . . . . 13
⊢ (((◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) ⊆ (◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) ∧ ran (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ran ∪
ran (comp‘𝑋)) →
((◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) × ran (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
| 50 | 46, 48, 49 | mp2an 708 |
. . . . . . . . . . . 12
⊢ ((◡dom (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∪ {∅}) × ran (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) |
| 51 | 40, 50 | sstri 3612 |
. . . . . . . . . . 11
⊢ tpos
(〈𝑦, (2nd
‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) |
| 52 | | elpw2g 4827 |
. . . . . . . . . . . 12
⊢ (((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ∈ 𝑈 → (tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ↔ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)))) |
| 53 | 38, 52 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ↔ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ⊆ ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)))) |
| 54 | 51, 53 | mpbiri 248 |
. . . . . . . . . 10
⊢ (𝜑 → tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
| 55 | 54 | ralrimivw 2967 |
. . . . . . . . 9
⊢ (𝜑 → ∀𝑦 ∈ (Base‘𝑋)tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
| 56 | 55 | ralrimivw 2967 |
. . . . . . . 8
⊢ (𝜑 → ∀𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
| 57 | | eqid 2622 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) = (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) |
| 58 | 57 | fmpt2 7237 |
. . . . . . . 8
⊢
(∀𝑥 ∈
((Base‘𝑋) ×
(Base‘𝑋))∀𝑦 ∈ (Base‘𝑋)tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)) ∈ 𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋)) ↔ (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
| 59 | 56, 58 | sylib 208 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))):(((Base‘𝑋) × (Base‘𝑋)) × (Base‘𝑋))⟶𝒫 ((◡dom ∪ ran
(comp‘𝑋) ∪
{∅}) × ran ∪ ran (comp‘𝑋))) |
| 60 | 8, 28, 39, 59 | wunf 9549 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ((Base‘𝑋) × (Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥))) ∈ 𝑈) |
| 61 | 8, 24, 60 | wunop 9544 |
. . . . 5
⊢ (𝜑 → 〈(comp‘ndx),
(𝑥 ∈
((Base‘𝑋) ×
(Base‘𝑋)), 𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)))〉 ∈ 𝑈) |
| 62 | 8, 22, 61 | wunsets 15900 |
. . . 4
⊢ (𝜑 → ((𝑋 sSet 〈(Hom ‘ndx), tpos (Hom
‘𝑋)〉) sSet
〈(comp‘ndx), (𝑥
∈ ((Base‘𝑋)
× (Base‘𝑋)),
𝑦 ∈ (Base‘𝑋) ↦ tpos (〈𝑦, (2nd ‘𝑥)〉(comp‘𝑋)(1st ‘𝑥)))〉) ∈ 𝑈) |
| 63 | 7, 62 | eqeltrd 2701 |
. . 3
⊢ (𝜑 → 𝑂 ∈ 𝑈) |
| 64 | | inss2 3834 |
. . . . 5
⊢ (𝑈 ∩ Cat) ⊆
Cat |
| 65 | 64, 13 | sseldi 3601 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ Cat) |
| 66 | 5 | oppccat 16382 |
. . . 4
⊢ (𝑋 ∈ Cat → 𝑂 ∈ Cat) |
| 67 | 65, 66 | syl 17 |
. . 3
⊢ (𝜑 → 𝑂 ∈ Cat) |
| 68 | 63, 67 | elind 3798 |
. 2
⊢ (𝜑 → 𝑂 ∈ (𝑈 ∩ Cat)) |
| 69 | 68, 12 | eleqtrrd 2704 |
1
⊢ (𝜑 → 𝑂 ∈ 𝐵) |