MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  wunfunc Structured version   Visualization version   GIF version

Theorem wunfunc 16559
Description: A weak universe is closed under the functor set operation. (Contributed by Mario Carneiro, 12-Jan-2017.)
Hypotheses
Ref Expression
wunfunc.1 (𝜑𝑈 ∈ WUni)
wunfunc.2 (𝜑𝐶𝑈)
wunfunc.3 (𝜑𝐷𝑈)
Assertion
Ref Expression
wunfunc (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)

Proof of Theorem wunfunc
Dummy variables 𝑓 𝑔 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wunfunc.1 . 2 (𝜑𝑈 ∈ WUni)
2 df-base 15863 . . . . 5 Base = Slot 1
3 wunfunc.3 . . . . 5 (𝜑𝐷𝑈)
42, 1, 3wunstr 15881 . . . 4 (𝜑 → (Base‘𝐷) ∈ 𝑈)
5 wunfunc.2 . . . . 5 (𝜑𝐶𝑈)
62, 1, 5wunstr 15881 . . . 4 (𝜑 → (Base‘𝐶) ∈ 𝑈)
71, 4, 6wunmap 9548 . . 3 (𝜑 → ((Base‘𝐷) ↑𝑚 (Base‘𝐶)) ∈ 𝑈)
8 df-hom 15966 . . . . . . . . 9 Hom = Slot 14
98, 1, 5wunstr 15881 . . . . . . . 8 (𝜑 → (Hom ‘𝐶) ∈ 𝑈)
101, 9wunrn 9551 . . . . . . 7 (𝜑 → ran (Hom ‘𝐶) ∈ 𝑈)
111, 10wununi 9528 . . . . . 6 (𝜑 ran (Hom ‘𝐶) ∈ 𝑈)
128, 1, 3wunstr 15881 . . . . . . . 8 (𝜑 → (Hom ‘𝐷) ∈ 𝑈)
131, 12wunrn 9551 . . . . . . 7 (𝜑 → ran (Hom ‘𝐷) ∈ 𝑈)
141, 13wununi 9528 . . . . . 6 (𝜑 ran (Hom ‘𝐷) ∈ 𝑈)
151, 11, 14wunxp 9546 . . . . 5 (𝜑 → ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ 𝑈)
161, 15wunpw 9529 . . . 4 (𝜑 → 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ 𝑈)
171, 6, 6wunxp 9546 . . . 4 (𝜑 → ((Base‘𝐶) × (Base‘𝐶)) ∈ 𝑈)
181, 16, 17wunmap 9548 . . 3 (𝜑 → (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶))) ∈ 𝑈)
191, 7, 18wunxp 9546 . 2 (𝜑 → (((Base‘𝐷) ↑𝑚 (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶)))) ∈ 𝑈)
20 relfunc 16522 . . . 4 Rel (𝐶 Func 𝐷)
2120a1i 11 . . 3 (𝜑 → Rel (𝐶 Func 𝐷))
22 df-br 4654 . . . 4 (𝑓(𝐶 Func 𝐷)𝑔 ↔ ⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷))
23 eqid 2622 . . . . . . . 8 (Base‘𝐶) = (Base‘𝐶)
24 eqid 2622 . . . . . . . 8 (Base‘𝐷) = (Base‘𝐷)
25 simpr 477 . . . . . . . 8 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓(𝐶 Func 𝐷)𝑔)
2623, 24, 25funcf1 16526 . . . . . . 7 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
27 fvex 6201 . . . . . . . 8 (Base‘𝐷) ∈ V
28 fvex 6201 . . . . . . . 8 (Base‘𝐶) ∈ V
2927, 28elmap 7886 . . . . . . 7 (𝑓 ∈ ((Base‘𝐷) ↑𝑚 (Base‘𝐶)) ↔ 𝑓:(Base‘𝐶)⟶(Base‘𝐷))
3026, 29sylibr 224 . . . . . 6 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑓 ∈ ((Base‘𝐷) ↑𝑚 (Base‘𝐶)))
31 mapsspw 7893 . . . . . . . . . . 11 (((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))))
32 fvssunirn 6217 . . . . . . . . . . . . 13 ((Hom ‘𝐶)‘𝑧) ⊆ ran (Hom ‘𝐶)
33 ovssunirn 6681 . . . . . . . . . . . . 13 ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ⊆ ran (Hom ‘𝐷)
34 xpss12 5225 . . . . . . . . . . . . 13 ((((Hom ‘𝐶)‘𝑧) ⊆ ran (Hom ‘𝐶) ∧ ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ⊆ ran (Hom ‘𝐷)) → (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
3532, 33, 34mp2an 708 . . . . . . . . . . . 12 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
36 sspwb 4917 . . . . . . . . . . . 12 ((((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↔ 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
3735, 36mpbi 220 . . . . . . . . . . 11 𝒫 (((Hom ‘𝐶)‘𝑧) × ((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧)))) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3831, 37sstri 3612 . . . . . . . . . 10 (((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
3938rgenw 2924 . . . . . . . . 9 𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
40 ss2ixp 7921 . . . . . . . . 9 (∀𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐶)‘𝑧)) ⊆ 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) → X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐶)‘𝑧)) ⊆ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)))
4139, 40ax-mp 5 . . . . . . . 8 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐶)‘𝑧)) ⊆ X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷))
4228, 28xpex 6962 . . . . . . . . 9 ((Base‘𝐶) × (Base‘𝐶)) ∈ V
43 fvex 6201 . . . . . . . . . . . . 13 (Hom ‘𝐶) ∈ V
4443rnex 7100 . . . . . . . . . . . 12 ran (Hom ‘𝐶) ∈ V
4544uniex 6953 . . . . . . . . . . 11 ran (Hom ‘𝐶) ∈ V
46 fvex 6201 . . . . . . . . . . . . 13 (Hom ‘𝐷) ∈ V
4746rnex 7100 . . . . . . . . . . . 12 ran (Hom ‘𝐷) ∈ V
4847uniex 6953 . . . . . . . . . . 11 ran (Hom ‘𝐷) ∈ V
4945, 48xpex 6962 . . . . . . . . . 10 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ V
5049pwex 4848 . . . . . . . . 9 𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ∈ V
5142, 50ixpconst 7918 . . . . . . . 8 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) = (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶)))
5241, 51sseqtri 3637 . . . . . . 7 X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐶)‘𝑧)) ⊆ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶)))
53 eqid 2622 . . . . . . . 8 (Hom ‘𝐶) = (Hom ‘𝐶)
54 eqid 2622 . . . . . . . 8 (Hom ‘𝐷) = (Hom ‘𝐷)
5523, 53, 54, 25funcixp 16527 . . . . . . 7 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑔X𝑧 ∈ ((Base‘𝐶) × (Base‘𝐶))(((𝑓‘(1st𝑧))(Hom ‘𝐷)(𝑓‘(2nd𝑧))) ↑𝑚 ((Hom ‘𝐶)‘𝑧)))
5652, 55sseldi 3601 . . . . . 6 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → 𝑔 ∈ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶))))
57 opelxpi 5148 . . . . . 6 ((𝑓 ∈ ((Base‘𝐷) ↑𝑚 (Base‘𝐶)) ∧ 𝑔 ∈ (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶)))) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑𝑚 (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶)))))
5830, 56, 57syl2anc 693 . . . . 5 ((𝜑𝑓(𝐶 Func 𝐷)𝑔) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑𝑚 (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶)))))
5958ex 450 . . . 4 (𝜑 → (𝑓(𝐶 Func 𝐷)𝑔 → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑𝑚 (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶))))))
6022, 59syl5bir 233 . . 3 (𝜑 → (⟨𝑓, 𝑔⟩ ∈ (𝐶 Func 𝐷) → ⟨𝑓, 𝑔⟩ ∈ (((Base‘𝐷) ↑𝑚 (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶))))))
6121, 60relssdv 5212 . 2 (𝜑 → (𝐶 Func 𝐷) ⊆ (((Base‘𝐷) ↑𝑚 (Base‘𝐶)) × (𝒫 ( ran (Hom ‘𝐶) × ran (Hom ‘𝐷)) ↑𝑚 ((Base‘𝐶) × (Base‘𝐶)))))
621, 19, 61wunss 9534 1 (𝜑 → (𝐶 Func 𝐷) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wcel 1990  wral 2912  wss 3574  𝒫 cpw 4158  cop 4183   cuni 4436   class class class wbr 4653   × cxp 5112  ran crn 5115  Rel wrel 5119  wf 5884  cfv 5888  (class class class)co 6650  1st c1st 7166  2nd c2nd 7167  𝑚 cmap 7857  Xcixp 7908  WUnicwun 9522  1c1 9937  4c4 11072  cdc 11493  Basecbs 15857  Hom chom 15952   Func cfunc 16514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-map 7859  df-pm 7860  df-ixp 7909  df-wun 9524  df-slot 15861  df-base 15863  df-hom 15966  df-func 16518
This theorem is referenced by:  wunnat  16616  catcfuccl  16759
  Copyright terms: Public domain W3C validator