MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfima2 Structured version   Visualization version   GIF version

Theorem dfima2 5468
Description: Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
dfima2 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦

Proof of Theorem dfima2
StepHypRef Expression
1 df-ima 5127 . 2 (𝐴𝐵) = ran (𝐴𝐵)
2 dfrn2 5311 . 2 ran (𝐴𝐵) = {𝑦 ∣ ∃𝑥 𝑥(𝐴𝐵)𝑦}
3 vex 3203 . . . . . . 7 𝑦 ∈ V
43brres 5402 . . . . . 6 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐴𝑦𝑥𝐵))
5 ancom 466 . . . . . 6 ((𝑥𝐴𝑦𝑥𝐵) ↔ (𝑥𝐵𝑥𝐴𝑦))
64, 5bitri 264 . . . . 5 (𝑥(𝐴𝐵)𝑦 ↔ (𝑥𝐵𝑥𝐴𝑦))
76exbii 1774 . . . 4 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐴𝑦))
8 df-rex 2918 . . . 4 (∃𝑥𝐵 𝑥𝐴𝑦 ↔ ∃𝑥(𝑥𝐵𝑥𝐴𝑦))
97, 8bitr4i 267 . . 3 (∃𝑥 𝑥(𝐴𝐵)𝑦 ↔ ∃𝑥𝐵 𝑥𝐴𝑦)
109abbii 2739 . 2 {𝑦 ∣ ∃𝑥 𝑥(𝐴𝐵)𝑦} = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
111, 2, 103eqtri 2648 1 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wrex 2913   class class class wbr 4653  ran crn 5115  cres 5116  cima 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127
This theorem is referenced by:  dfima3  5469  elimag  5470  imasng  5487  dfimafn  6245  isoini  6588  dffin1-5  9210  dfimafnf  29436  ofpreima  29465  dfaimafn  41245
  Copyright terms: Public domain W3C validator